DehazeFormer / app.py
IDKiro
init
7eafae4
raw
history blame
1.39 kB
import torch
import numpy as np
import gradio as gr
from PIL import Image
from models import dehazeformer
def infer(raw_image):
network = dehazeformer()
network.load_state_dict(torch.load('./saved_models/dehazeformer.pth', map_location=torch.device('cpu'))['state_dict'])
# torch.save({'state_dict': network.state_dict()}, './saved_models/dehazeformer.pth')
network.eval()
image = np.array(raw_image, np.float32) / 255. * 2 - 1
image = torch.from_numpy(image)
image = image.permute((2, 0, 1)).unsqueeze(0)
with torch.no_grad():
output = network(image).clamp_(-1, 1)[0] * 0.5 + 0.5
output = output.permute((1, 2, 0))
output = np.array(output, np.float32)
output = np.round(output * 255.0)
output = Image.fromarray(output.astype(np.uint8))
return output
title = "DehazeFormer"
description = f"We use a mixed dataset to train the model, allowing the trained model to work better on real hazy images. To allow the model to process high-resolution images more efficiently and effectively, we extend it to the [MCT](https://github.com/IDKiro/MCT) variant."
examples = [
["examples/1.jpg"],
["examples/2.jpg"],
["examples/3.jpg"],
["examples/4.jpg"],
["examples/5.jpg"],
["examples/6.jpg"]
]
iface = gr.Interface(
infer,
inputs="image", outputs="image",
title=title,
description=description,
allow_flagging='never',
examples=examples,
)
iface.launch()