|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import math |
|
|
|
from torch.nn.init import _calculate_fan_in_and_fan_out |
|
from timm.models.layers import to_2tuple, trunc_normal_ |
|
|
|
import torchvision.transforms as transforms |
|
from torchvision import models |
|
|
|
import gradio as gr |
|
from PIL import Image |
|
import numpy as np |
|
from matplotlib import pyplot as plt |
|
|
|
class RLN(nn.Module): |
|
r"""Revised LayerNorm""" |
|
def __init__(self, dim, eps=1e-5, detach_grad=False): |
|
super(RLN, self).__init__() |
|
self.eps = eps |
|
self.detach_grad = detach_grad |
|
|
|
self.weight = nn.Parameter(torch.ones((1, dim, 1, 1))) |
|
self.bias = nn.Parameter(torch.zeros((1, dim, 1, 1))) |
|
|
|
self.meta1 = nn.Conv2d(1, dim, 1) |
|
self.meta2 = nn.Conv2d(1, dim, 1) |
|
|
|
trunc_normal_(self.meta1.weight, std=.02) |
|
nn.init.constant_(self.meta1.bias, 1) |
|
|
|
trunc_normal_(self.meta2.weight, std=.02) |
|
nn.init.constant_(self.meta2.bias, 0) |
|
|
|
def forward(self, input): |
|
mean = torch.mean(input, dim=(1, 2, 3), keepdim=True) |
|
std = torch.sqrt((input - mean).pow(2).mean(dim=(1, 2, 3), keepdim=True) + self.eps) |
|
|
|
normalized_input = (input - mean) / std |
|
|
|
if self.detach_grad: |
|
rescale, rebias = self.meta1(std.detach()), self.meta2(mean.detach()) |
|
else: |
|
rescale, rebias = self.meta1(std), self.meta2(mean) |
|
|
|
out = normalized_input * self.weight + self.bias |
|
return out, rescale, rebias |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, network_depth, in_features, hidden_features=None, out_features=None): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
|
|
self.network_depth = network_depth |
|
|
|
self.mlp = nn.Sequential( |
|
nn.Conv2d(in_features, hidden_features, 1), |
|
nn.ReLU(True), |
|
nn.Conv2d(hidden_features, out_features, 1) |
|
) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Conv2d): |
|
gain = (8 * self.network_depth) ** (-1/4) |
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(m.weight) |
|
std = gain * math.sqrt(2.0 / float(fan_in + fan_out)) |
|
trunc_normal_(m.weight, std=std) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward(self, x): |
|
return self.mlp(x) |
|
|
|
|
|
def window_partition(x, window_size): |
|
B, H, W, C = x.shape |
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) |
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size**2, C) |
|
return windows |
|
|
|
|
|
def window_reverse(windows, window_size, H, W): |
|
B = int(windows.shape[0] / (H * W / window_size / window_size)) |
|
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) |
|
return x |
|
|
|
|
|
def get_relative_positions(window_size): |
|
coords_h = torch.arange(window_size) |
|
coords_w = torch.arange(window_size) |
|
|
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_positions = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
|
|
relative_positions = relative_positions.permute(1, 2, 0).contiguous() |
|
relative_positions_log = torch.sign(relative_positions) * torch.log(1. + relative_positions.abs()) |
|
|
|
return relative_positions_log |
|
|
|
|
|
class WindowAttention(nn.Module): |
|
def __init__(self, dim, window_size, num_heads): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
self.window_size = window_size |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim ** -0.5 |
|
|
|
relative_positions = get_relative_positions(self.window_size) |
|
self.register_buffer("relative_positions", relative_positions) |
|
self.meta = nn.Sequential( |
|
nn.Linear(2, 256, bias=True), |
|
nn.ReLU(True), |
|
nn.Linear(256, num_heads, bias=True) |
|
) |
|
|
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, qkv): |
|
B_, N, _ = qkv.shape |
|
|
|
qkv = qkv.reshape(B_, N, 3, self.num_heads, self.dim // self.num_heads).permute(2, 0, 3, 1, 4) |
|
|
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
q = q * self.scale |
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
relative_position_bias = self.meta(self.relative_positions) |
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
attn = self.softmax(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, self.dim) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, network_depth, dim, num_heads, window_size, shift_size, use_attn=False, conv_type=None): |
|
super().__init__() |
|
self.dim = dim |
|
self.head_dim = int(dim // num_heads) |
|
self.num_heads = num_heads |
|
|
|
self.window_size = window_size |
|
self.shift_size = shift_size |
|
|
|
self.network_depth = network_depth |
|
self.use_attn = use_attn |
|
self.conv_type = conv_type |
|
|
|
if self.conv_type == 'Conv': |
|
self.conv = nn.Sequential( |
|
nn.Conv2d(dim, dim, kernel_size=3, padding=1, padding_mode='reflect'), |
|
nn.ReLU(True), |
|
nn.Conv2d(dim, dim, kernel_size=3, padding=1, padding_mode='reflect') |
|
) |
|
|
|
if self.conv_type == 'DWConv': |
|
self.conv = nn.Conv2d(dim, dim, kernel_size=5, padding=2, groups=dim, padding_mode='reflect') |
|
|
|
if self.conv_type == 'DWConv' or self.use_attn: |
|
self.V = nn.Conv2d(dim, dim, 1) |
|
self.proj = nn.Conv2d(dim, dim, 1) |
|
|
|
if self.use_attn: |
|
self.QK = nn.Conv2d(dim, dim * 2, 1) |
|
self.attn = WindowAttention(dim, window_size, num_heads) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Conv2d): |
|
w_shape = m.weight.shape |
|
|
|
if w_shape[0] == self.dim * 2: |
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(m.weight) |
|
std = math.sqrt(2.0 / float(fan_in + fan_out)) |
|
trunc_normal_(m.weight, std=std) |
|
else: |
|
gain = (8 * self.network_depth) ** (-1/4) |
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(m.weight) |
|
std = gain * math.sqrt(2.0 / float(fan_in + fan_out)) |
|
trunc_normal_(m.weight, std=std) |
|
|
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def check_size(self, x, shift=False): |
|
_, _, h, w = x.size() |
|
mod_pad_h = (self.window_size - h % self.window_size) % self.window_size |
|
mod_pad_w = (self.window_size - w % self.window_size) % self.window_size |
|
|
|
if shift: |
|
x = F.pad(x, (self.shift_size, (self.window_size-self.shift_size+mod_pad_w) % self.window_size, |
|
self.shift_size, (self.window_size-self.shift_size+mod_pad_h) % self.window_size), mode='reflect') |
|
else: |
|
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect') |
|
return x |
|
|
|
def forward(self, X): |
|
B, C, H, W = X.shape |
|
|
|
if self.conv_type == 'DWConv' or self.use_attn: |
|
V = self.V(X) |
|
|
|
if self.use_attn: |
|
QK = self.QK(X) |
|
QKV = torch.cat([QK, V], dim=1) |
|
|
|
|
|
shifted_QKV = self.check_size(QKV, self.shift_size > 0) |
|
Ht, Wt = shifted_QKV.shape[2:] |
|
|
|
|
|
shifted_QKV = shifted_QKV.permute(0, 2, 3, 1) |
|
qkv = window_partition(shifted_QKV, self.window_size) |
|
|
|
attn_windows = self.attn(qkv) |
|
|
|
|
|
shifted_out = window_reverse(attn_windows, self.window_size, Ht, Wt) |
|
|
|
|
|
out = shifted_out[:, self.shift_size:(self.shift_size+H), self.shift_size:(self.shift_size+W), :] |
|
attn_out = out.permute(0, 3, 1, 2) |
|
|
|
if self.conv_type in ['Conv', 'DWConv']: |
|
conv_out = self.conv(V) |
|
out = self.proj(conv_out + attn_out) |
|
else: |
|
out = self.proj(attn_out) |
|
|
|
else: |
|
if self.conv_type == 'Conv': |
|
out = self.conv(X) |
|
elif self.conv_type == 'DWConv': |
|
out = self.proj(self.conv(V)) |
|
|
|
return out |
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
def __init__(self, network_depth, dim, num_heads, mlp_ratio=4., |
|
norm_layer=nn.LayerNorm, mlp_norm=False, |
|
window_size=8, shift_size=0, use_attn=True, conv_type=None): |
|
super().__init__() |
|
self.use_attn = use_attn |
|
self.mlp_norm = mlp_norm |
|
|
|
self.norm1 = norm_layer(dim) if use_attn else nn.Identity() |
|
self.attn = Attention(network_depth, dim, num_heads=num_heads, window_size=window_size, |
|
shift_size=shift_size, use_attn=use_attn, conv_type=conv_type) |
|
|
|
self.norm2 = norm_layer(dim) if use_attn and mlp_norm else nn.Identity() |
|
self.mlp = Mlp(network_depth, dim, hidden_features=int(dim * mlp_ratio)) |
|
|
|
def forward(self, x): |
|
identity = x |
|
if self.use_attn: x, rescale, rebias = self.norm1(x) |
|
x = self.attn(x) |
|
if self.use_attn: x = x * rescale + rebias |
|
x = identity + x |
|
|
|
identity = x |
|
if self.use_attn and self.mlp_norm: x, rescale, rebias = self.norm2(x) |
|
x = self.mlp(x) |
|
if self.use_attn and self.mlp_norm: x = x * rescale + rebias |
|
x = identity + x |
|
return x |
|
|
|
|
|
class BasicLayer(nn.Module): |
|
def __init__(self, network_depth, dim, depth, num_heads, mlp_ratio=4., |
|
norm_layer=nn.LayerNorm, window_size=8, |
|
attn_ratio=0., attn_loc='last', conv_type=None): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
self.depth = depth |
|
|
|
attn_depth = attn_ratio * depth |
|
|
|
if attn_loc == 'last': |
|
use_attns = [i >= depth-attn_depth for i in range(depth)] |
|
elif attn_loc == 'first': |
|
use_attns = [i < attn_depth for i in range(depth)] |
|
elif attn_loc == 'middle': |
|
use_attns = [i >= (depth-attn_depth)//2 and i < (depth+attn_depth)//2 for i in range(depth)] |
|
|
|
|
|
self.blocks = nn.ModuleList([ |
|
TransformerBlock(network_depth=network_depth, |
|
dim=dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
norm_layer=norm_layer, |
|
window_size=window_size, |
|
shift_size=0 if (i % 2 == 0) else window_size // 2, |
|
use_attn=use_attns[i], conv_type=conv_type) |
|
for i in range(depth)]) |
|
|
|
def forward(self, x): |
|
for blk in self.blocks: |
|
x = blk(x) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, kernel_size=None): |
|
super().__init__() |
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
if kernel_size is None: |
|
kernel_size = patch_size |
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=patch_size, |
|
padding=(kernel_size-patch_size+1)//2, padding_mode='reflect') |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class PatchUnEmbed(nn.Module): |
|
def __init__(self, patch_size=4, out_chans=3, embed_dim=96, kernel_size=None): |
|
super().__init__() |
|
self.out_chans = out_chans |
|
self.embed_dim = embed_dim |
|
|
|
if kernel_size is None: |
|
kernel_size = 1 |
|
|
|
self.proj = nn.Sequential( |
|
nn.Conv2d(embed_dim, out_chans*patch_size**2, kernel_size=kernel_size, |
|
padding=kernel_size//2, padding_mode='reflect'), |
|
nn.PixelShuffle(patch_size) |
|
) |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class SKFusion(nn.Module): |
|
def __init__(self, dim, height=2, reduction=8): |
|
super(SKFusion, self).__init__() |
|
|
|
self.height = height |
|
d = max(int(dim/reduction), 4) |
|
|
|
self.avg_pool = nn.AdaptiveAvgPool2d(1) |
|
self.mlp = nn.Sequential( |
|
nn.Conv2d(dim, d, 1, bias=False), |
|
nn.ReLU(), |
|
nn.Conv2d(d, dim*height, 1, bias=False) |
|
) |
|
|
|
self.softmax = nn.Softmax(dim=1) |
|
|
|
def forward(self, in_feats): |
|
B, C, H, W = in_feats[0].shape |
|
|
|
in_feats = torch.cat(in_feats, dim=1) |
|
in_feats = in_feats.view(B, self.height, C, H, W) |
|
|
|
feats_sum = torch.sum(in_feats, dim=1) |
|
attn = self.mlp(self.avg_pool(feats_sum)) |
|
attn = self.softmax(attn.view(B, self.height, C, 1, 1)) |
|
|
|
out = torch.sum(in_feats*attn, dim=1) |
|
return out |
|
|
|
|
|
class DehazeFormer(nn.Module): |
|
def __init__(self, in_chans=3, out_chans=4, window_size=8, |
|
embed_dims=[24, 48, 96, 48, 24], |
|
mlp_ratios=[2., 4., 4., 2., 2.], |
|
depths=[16, 16, 16, 8, 8], |
|
num_heads=[2, 4, 6, 1, 1], |
|
attn_ratio=[1/4, 1/2, 3/4, 0, 0], |
|
conv_type=['DWConv', 'DWConv', 'DWConv', 'DWConv', 'DWConv'], |
|
norm_layer=[RLN, RLN, RLN, RLN, RLN]): |
|
super(DehazeFormer, self).__init__() |
|
|
|
|
|
self.patch_size = 4 |
|
self.window_size = window_size |
|
self.mlp_ratios = mlp_ratios |
|
|
|
|
|
self.patch_embed = PatchEmbed( |
|
patch_size=1, in_chans=in_chans, embed_dim=embed_dims[0], kernel_size=3) |
|
|
|
|
|
self.layer1 = BasicLayer(network_depth=sum(depths), dim=embed_dims[0], depth=depths[0], |
|
num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], |
|
norm_layer=norm_layer[0], window_size=window_size, |
|
attn_ratio=attn_ratio[0], attn_loc='last', conv_type=conv_type[0]) |
|
|
|
self.patch_merge1 = PatchEmbed( |
|
patch_size=2, in_chans=embed_dims[0], embed_dim=embed_dims[1]) |
|
|
|
self.skip1 = nn.Conv2d(embed_dims[0], embed_dims[0], 1) |
|
|
|
self.layer2 = BasicLayer(network_depth=sum(depths), dim=embed_dims[1], depth=depths[1], |
|
num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], |
|
norm_layer=norm_layer[1], window_size=window_size, |
|
attn_ratio=attn_ratio[1], attn_loc='last', conv_type=conv_type[1]) |
|
|
|
self.patch_merge2 = PatchEmbed( |
|
patch_size=2, in_chans=embed_dims[1], embed_dim=embed_dims[2]) |
|
|
|
self.skip2 = nn.Conv2d(embed_dims[1], embed_dims[1], 1) |
|
|
|
self.layer3 = BasicLayer(network_depth=sum(depths), dim=embed_dims[2], depth=depths[2], |
|
num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], |
|
norm_layer=norm_layer[2], window_size=window_size, |
|
attn_ratio=attn_ratio[2], attn_loc='last', conv_type=conv_type[2]) |
|
|
|
self.patch_split1 = PatchUnEmbed( |
|
patch_size=2, out_chans=embed_dims[3], embed_dim=embed_dims[2]) |
|
|
|
assert embed_dims[1] == embed_dims[3] |
|
self.fusion1 = SKFusion(embed_dims[3]) |
|
|
|
self.layer4 = BasicLayer(network_depth=sum(depths), dim=embed_dims[3], depth=depths[3], |
|
num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], |
|
norm_layer=norm_layer[3], window_size=window_size, |
|
attn_ratio=attn_ratio[3], attn_loc='last', conv_type=conv_type[3]) |
|
|
|
self.patch_split2 = PatchUnEmbed( |
|
patch_size=2, out_chans=embed_dims[4], embed_dim=embed_dims[3]) |
|
|
|
assert embed_dims[0] == embed_dims[4] |
|
self.fusion2 = SKFusion(embed_dims[4]) |
|
|
|
self.layer5 = BasicLayer(network_depth=sum(depths), dim=embed_dims[4], depth=depths[4], |
|
num_heads=num_heads[4], mlp_ratio=mlp_ratios[4], |
|
norm_layer=norm_layer[4], window_size=window_size, |
|
attn_ratio=attn_ratio[4], attn_loc='last', conv_type=conv_type[4]) |
|
|
|
|
|
self.patch_unembed = PatchUnEmbed( |
|
patch_size=1, out_chans=out_chans, embed_dim=embed_dims[4], kernel_size=3) |
|
|
|
|
|
def check_image_size(self, x): |
|
|
|
_, _, h, w = x.size() |
|
mod_pad_h = (self.patch_size - h % self.patch_size) % self.patch_size |
|
mod_pad_w = (self.patch_size - w % self.patch_size) % self.patch_size |
|
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect') |
|
return x |
|
|
|
def forward_features(self, x): |
|
x = self.patch_embed(x) |
|
x = self.layer1(x) |
|
skip1 = x |
|
|
|
x = self.patch_merge1(x) |
|
x = self.layer2(x) |
|
skip2 = x |
|
|
|
x = self.patch_merge2(x) |
|
x = self.layer3(x) |
|
x = self.patch_split1(x) |
|
|
|
x = self.fusion1([x, self.skip2(skip2)]) + x |
|
x = self.layer4(x) |
|
x = self.patch_split2(x) |
|
|
|
x = self.fusion2([x, self.skip1(skip1)]) + x |
|
x = self.layer5(x) |
|
x = self.patch_unembed(x) |
|
return x |
|
|
|
def forward(self, x): |
|
H, W = x.shape[2:] |
|
x = self.check_image_size(x) |
|
|
|
feat = self.forward_features(x) |
|
K, B = torch.split(feat, (1, 3), dim=1) |
|
|
|
x = K * x - B + x |
|
x = x[:, :, :H, :W] |
|
return x |
|
|
|
|
|
def dehazeformer_t(): |
|
return DehazeFormer( |
|
embed_dims=[24, 48, 96, 48, 24], |
|
mlp_ratios=[2., 4., 4., 2., 2.], |
|
depths=[4, 4, 4, 2, 2], |
|
num_heads=[2, 4, 6, 1, 1], |
|
attn_ratio=[0, 1/2, 1, 0, 0], |
|
conv_type=['DWConv', 'DWConv', 'DWConv', 'DWConv', 'DWConv']) |