Spaces:
Sleeping
Sleeping
import transformers | |
import torch | |
import gradio as gr | |
import os | |
# Retrieve Hugging Face API token from environment variable | |
hf_token = os.getenv("HF_TOKEN") | |
# Ensure the token is available | |
if not hf_token: | |
raise ValueError("Hugging Face token not found. Please add it to the secrets in Hugging Face Spaces.") | |
# Load the chatbot model with the token (for private models or usage limits) | |
model_id = "meta-llama/Meta-Llama-3-8B-Instruct" | |
pipeline = transformers.pipeline( | |
"text-generation", | |
model=model_id, | |
model_kwargs={"torch_dtype": torch.bfloat16}, | |
device_map="auto", | |
use_auth_token=hf_token # Use the Hugging Face token here | |
) | |
# Predefined data | |
example_data = [ | |
{"Institution": "A", "TLR": 70, "GO": 85, "OI": 90, "PR": 75}, | |
{"Institution": "B", "TLR": 80, "GO": 88, "OI": 85, "PR": 90}, | |
{"Institution": "C", "TLR": 65, "GO": 80, "OI": 70, "PR": 60}, | |
] | |
# Format predefined data into a readable string | |
predefined_context = "Here are the institution rankings based on scores:\n" | |
for institution in sorted(example_data, key=lambda x: x["TLR"] + x["GO"] + x["OI"] + x["PR"], reverse=True): | |
total_score = institution["TLR"] + institution["GO"] + institution["OI"] + institution["PR"] | |
predefined_context += f"- {institution['Institution']} (Total Score: {total_score})\n" | |
# System prompt to provide context to the model | |
system_prompt = f"""You are an intelligent assistant. Here is some contextual information: | |
{predefined_context} | |
When a user asks about rankings, respond with this information. If the user asks general questions, respond appropriately. | |
""" | |
# Chatbot function | |
def chatbot_response(user_message): | |
# Combine system prompt with the user's message | |
full_prompt = f"{system_prompt}\nUser: {user_message}\nAssistant:" | |
# Generate a response using the model | |
outputs = pipeline( | |
full_prompt, | |
max_new_tokens=150, # Adjust token limit as needed | |
do_sample=True, | |
temperature=0.7, | |
top_p=0.9, | |
) | |
return outputs[0]["generated_text"] | |
# Gradio interface | |
def build_gradio_ui(): | |
with gr.Blocks() as demo: | |
gr.Markdown("## Intelligent Chatbot with Predefined Context and AI Responses") | |
gr.Markdown("Ask about institution rankings or any general query!") | |
with gr.Row(): | |
user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...") | |
chatbot_output = gr.Textbox(label="Chatbot Response", interactive=False) | |
submit_button = gr.Button("Send") | |
submit_button.click(chatbot_response, inputs=[user_input], outputs=[chatbot_output]) | |
return demo | |
# Launch the Gradio app with a public link | |
demo = build_gradio_ui() | |
if __name__ == "__main__": | |
demo.launch(share=True) # Enable public link | |