File size: 3,199 Bytes
d347764
 
 
 
 
b239645
d347764
 
 
 
 
b239645
 
d347764
 
b239645
d347764
b239645
 
 
 
d347764
b239645
 
 
 
 
 
950d1a2
 
d347764
 
 
b239645
 
d347764
 
 
b239645
 
 
 
 
c949774
 
7b9bf4b
c949774
 
 
 
 
d347764
 
 
 
b239645
c949774
d347764
 
 
f805e49
 
c6f1d54
 
f805e49
b239645
f805e49
 
b239645
c737803
 
 
d347764
226ec3a
d347764
f805e49
 
d347764
c737803
 
 
 
 
 
 
 
 
 
 
b239645
 
c737803
b239645
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset

from transformers import pipeline, AutoTokenizer, VitsModel, VitsTokenizer


device = "cuda:0" if torch.cuda.is_available() else "cpu"

# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition",
                    model="openai/whisper-base", device=device)

# load text-to-speech checkpoint and speaker embeddings
# processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")

# model = SpeechT5ForTextToSpeech.from_pretrained(
#    "microsoft/speecht5_tts").to(device)
# vocoder = SpeechT5HifiGan.from_pretrained(
#    "microsoft/speecht5_hifigan").to(device)

# embeddings_dataset = load_dataset(
#    "Matthijs/cmu-arctic-xvectors", split="validation")
# speaker_embeddings = torch.tensor(
# embeddings_dataset[7306]["xvector"]).unsqueeze(0)


model_nld = VitsModel.from_pretrained("facebook/mms-tts-ara")
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-ara")


def translate(audio):
    outputs = asr_pipe(audio, max_new_tokens=256,
                       generate_kwargs={"task": "translate"})
    return outputs["text"]


def synthesise2(text):
    # inputs = processor(text=text, return_tensors="pt")
    # speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
    inputs = tokenizer(text, return_tensors="pt")
    with torch.no_grad():
        outputs = model_nld(**inputs)
        #speech = outputs.waveform[0]
        audio_tensor = outputs.audio
        # Convert tensor to numpy array
        audio_array = audio_tensor.numpy()
        # Reshape the audio array to 1D
    audio_array = audio_array.reshape(-1)
    return audio_array


def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    synthesised_speech = synthesise2(translated_text)
    synthesised_speech = np.int16(synthesised_speech * 32767)
    return 16000, synthesised_speech


title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:

![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Digram of cascaded speech to speech translation")
"""


demo = gr.Blocks()

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="microphone", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    title=title,
    description=description,
)

file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="upload", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    examples=[["./example.wav"]],
    title=title,
    description=description,
)

with demo:
    gr.TabbedInterface([mic_translate, file_translate],
                       ["Microphone", "Audio File"])

demo.launch()