chaouch's picture
ara
950d1a2
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset
from transformers import pipeline, AutoTokenizer, VitsModel, VitsTokenizer
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition",
model="openai/whisper-base", device=device)
# load text-to-speech checkpoint and speaker embeddings
# processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
# model = SpeechT5ForTextToSpeech.from_pretrained(
# "microsoft/speecht5_tts").to(device)
# vocoder = SpeechT5HifiGan.from_pretrained(
# "microsoft/speecht5_hifigan").to(device)
# embeddings_dataset = load_dataset(
# "Matthijs/cmu-arctic-xvectors", split="validation")
# speaker_embeddings = torch.tensor(
# embeddings_dataset[7306]["xvector"]).unsqueeze(0)
model_nld = VitsModel.from_pretrained("facebook/mms-tts-ara")
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-ara")
def translate(audio):
outputs = asr_pipe(audio, max_new_tokens=256,
generate_kwargs={"task": "translate"})
return outputs["text"]
def synthesise2(text):
# inputs = processor(text=text, return_tensors="pt")
# speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
outputs = model_nld(**inputs)
#speech = outputs.waveform[0]
audio_tensor = outputs.audio
# Convert tensor to numpy array
audio_array = audio_tensor.numpy()
# Reshape the audio array to 1D
audio_array = audio_array.reshape(-1)
return audio_array
def speech_to_speech_translation(audio):
translated_text = translate(audio)
synthesised_speech = synthesise2(translated_text)
synthesised_speech = np.int16(synthesised_speech * 32767)
return 16000, synthesised_speech
title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Digram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate],
["Microphone", "Audio File"])
demo.launch()