Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import logging | |
import os | |
from dataclasses import dataclass | |
from typing import List, Optional, Union | |
import tqdm | |
from filelock import FileLock | |
from transformers import ( | |
BartTokenizer, | |
BartTokenizerFast, | |
DataProcessor, | |
PreTrainedTokenizer, | |
RobertaTokenizer, | |
RobertaTokenizerFast, | |
XLMRobertaTokenizer, | |
is_tf_available, | |
is_torch_available, | |
) | |
logger = logging.getLogger(__name__) | |
class InputExample: | |
""" | |
A single training/test example for simple sequence classification. | |
Args: | |
guid: Unique id for the example. | |
text_a: string. The untokenized text of the first sequence. For single | |
sequence tasks, only this sequence must be specified. | |
text_b: (Optional) string. The untokenized text of the second sequence. | |
Only must be specified for sequence pair tasks. | |
label: (Optional) string. The label of the example. This should be | |
specified for train and dev examples, but not for test examples. | |
pairID: (Optional) string. Unique identifier for the pair of sentences. | |
""" | |
guid: str | |
text_a: str | |
text_b: Optional[str] = None | |
label: Optional[str] = None | |
pairID: Optional[str] = None | |
class InputFeatures: | |
""" | |
A single set of features of data. | |
Property names are the same names as the corresponding inputs to a model. | |
Args: | |
input_ids: Indices of input sequence tokens in the vocabulary. | |
attention_mask: Mask to avoid performing attention on padding token indices. | |
Mask values selected in ``[0, 1]``: | |
Usually ``1`` for tokens that are NOT MASKED, ``0`` for MASKED (padded) tokens. | |
token_type_ids: (Optional) Segment token indices to indicate first and second | |
portions of the inputs. Only some models use them. | |
label: (Optional) Label corresponding to the input. Int for classification problems, | |
float for regression problems. | |
pairID: (Optional) Unique identifier for the pair of sentences. | |
""" | |
input_ids: List[int] | |
attention_mask: Optional[List[int]] = None | |
token_type_ids: Optional[List[int]] = None | |
label: Optional[Union[int, float]] = None | |
pairID: Optional[int] = None | |
if is_torch_available(): | |
import torch | |
from torch.utils.data import Dataset | |
class HansDataset(Dataset): | |
""" | |
This will be superseded by a framework-agnostic approach | |
soon. | |
""" | |
features: List[InputFeatures] | |
def __init__( | |
self, | |
data_dir: str, | |
tokenizer: PreTrainedTokenizer, | |
task: str, | |
max_seq_length: Optional[int] = None, | |
overwrite_cache=False, | |
evaluate: bool = False, | |
): | |
processor = hans_processors[task]() | |
cached_features_file = os.path.join( | |
data_dir, | |
"cached_{}_{}_{}_{}".format( | |
"dev" if evaluate else "train", | |
tokenizer.__class__.__name__, | |
str(max_seq_length), | |
task, | |
), | |
) | |
label_list = processor.get_labels() | |
if tokenizer.__class__ in ( | |
RobertaTokenizer, | |
RobertaTokenizerFast, | |
XLMRobertaTokenizer, | |
BartTokenizer, | |
BartTokenizerFast, | |
): | |
# HACK(label indices are swapped in RoBERTa pretrained model) | |
label_list[1], label_list[2] = label_list[2], label_list[1] | |
self.label_list = label_list | |
# Make sure only the first process in distributed training processes the dataset, | |
# and the others will use the cache. | |
lock_path = cached_features_file + ".lock" | |
with FileLock(lock_path): | |
if os.path.exists(cached_features_file) and not overwrite_cache: | |
logger.info(f"Loading features from cached file {cached_features_file}") | |
self.features = torch.load(cached_features_file) | |
else: | |
logger.info(f"Creating features from dataset file at {data_dir}") | |
examples = ( | |
processor.get_dev_examples(data_dir) if evaluate else processor.get_train_examples(data_dir) | |
) | |
logger.info("Training examples: %s", len(examples)) | |
self.features = hans_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer) | |
logger.info("Saving features into cached file %s", cached_features_file) | |
torch.save(self.features, cached_features_file) | |
def __len__(self): | |
return len(self.features) | |
def __getitem__(self, i) -> InputFeatures: | |
return self.features[i] | |
def get_labels(self): | |
return self.label_list | |
if is_tf_available(): | |
import tensorflow as tf | |
class TFHansDataset: | |
""" | |
This will be superseded by a framework-agnostic approach | |
soon. | |
""" | |
features: List[InputFeatures] | |
def __init__( | |
self, | |
data_dir: str, | |
tokenizer: PreTrainedTokenizer, | |
task: str, | |
max_seq_length: Optional[int] = 128, | |
overwrite_cache=False, | |
evaluate: bool = False, | |
): | |
processor = hans_processors[task]() | |
label_list = processor.get_labels() | |
if tokenizer.__class__ in ( | |
RobertaTokenizer, | |
RobertaTokenizerFast, | |
XLMRobertaTokenizer, | |
BartTokenizer, | |
BartTokenizerFast, | |
): | |
# HACK(label indices are swapped in RoBERTa pretrained model) | |
label_list[1], label_list[2] = label_list[2], label_list[1] | |
self.label_list = label_list | |
examples = processor.get_dev_examples(data_dir) if evaluate else processor.get_train_examples(data_dir) | |
self.features = hans_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer) | |
def gen(): | |
for ex_index, ex in tqdm.tqdm(enumerate(self.features), desc="convert examples to features"): | |
if ex_index % 10000 == 0: | |
logger.info("Writing example %d of %d" % (ex_index, len(examples))) | |
yield ( | |
{ | |
"example_id": 0, | |
"input_ids": ex.input_ids, | |
"attention_mask": ex.attention_mask, | |
"token_type_ids": ex.token_type_ids, | |
}, | |
ex.label, | |
) | |
self.dataset = tf.data.Dataset.from_generator( | |
gen, | |
( | |
{ | |
"example_id": tf.int32, | |
"input_ids": tf.int32, | |
"attention_mask": tf.int32, | |
"token_type_ids": tf.int32, | |
}, | |
tf.int64, | |
), | |
( | |
{ | |
"example_id": tf.TensorShape([]), | |
"input_ids": tf.TensorShape([None, None]), | |
"attention_mask": tf.TensorShape([None, None]), | |
"token_type_ids": tf.TensorShape([None, None]), | |
}, | |
tf.TensorShape([]), | |
), | |
) | |
def get_dataset(self): | |
return self.dataset | |
def __len__(self): | |
return len(self.features) | |
def __getitem__(self, i) -> InputFeatures: | |
return self.features[i] | |
def get_labels(self): | |
return self.label_list | |
class HansProcessor(DataProcessor): | |
"""Processor for the HANS data set.""" | |
def get_train_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples(self._read_tsv(os.path.join(data_dir, "heuristics_train_set.txt")), "train") | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples(self._read_tsv(os.path.join(data_dir, "heuristics_evaluation_set.txt")), "dev") | |
def get_labels(self): | |
"""See base class. | |
Note that we follow the standard three labels for MNLI | |
(see :class:`~transformers.data.processors.utils.MnliProcessor`) | |
but the HANS evaluation groups `contradiction` and `neutral` into `non-entailment` (label 0) while | |
`entailment` is label 1.""" | |
return ["contradiction", "entailment", "neutral"] | |
def _create_examples(self, lines, set_type): | |
"""Creates examples for the training and dev sets.""" | |
examples = [] | |
for i, line in enumerate(lines): | |
if i == 0: | |
continue | |
guid = "%s-%s" % (set_type, line[0]) | |
text_a = line[5] | |
text_b = line[6] | |
pairID = line[7][2:] if line[7].startswith("ex") else line[7] | |
label = line[0] | |
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label, pairID=pairID)) | |
return examples | |
def hans_convert_examples_to_features( | |
examples: List[InputExample], | |
label_list: List[str], | |
max_length: int, | |
tokenizer: PreTrainedTokenizer, | |
): | |
""" | |
Loads a data file into a list of ``InputFeatures`` | |
Args: | |
examples: List of ``InputExamples`` containing the examples. | |
label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method. | |
max_length: Maximum example length. | |
tokenizer: Instance of a tokenizer that will tokenize the examples. | |
Returns: | |
A list of task-specific ``InputFeatures`` which can be fed to the model. | |
""" | |
label_map = {label: i for i, label in enumerate(label_list)} | |
features = [] | |
for ex_index, example in tqdm.tqdm(enumerate(examples), desc="convert examples to features"): | |
if ex_index % 10000 == 0: | |
logger.info("Writing example %d" % (ex_index)) | |
inputs = tokenizer( | |
example.text_a, | |
example.text_b, | |
add_special_tokens=True, | |
max_length=max_length, | |
padding="max_length", | |
truncation=True, | |
return_overflowing_tokens=True, | |
) | |
label = label_map[example.label] if example.label in label_map else 0 | |
pairID = int(example.pairID) | |
features.append(InputFeatures(**inputs, label=label, pairID=pairID)) | |
for i, example in enumerate(examples[:5]): | |
logger.info("*** Example ***") | |
logger.info(f"guid: {example}") | |
logger.info(f"features: {features[i]}") | |
return features | |
hans_tasks_num_labels = { | |
"hans": 3, | |
} | |
hans_processors = { | |
"hans": HansProcessor, | |
} | |