chendl's picture
Add application file
0b7b08a
raw
history blame
18.5 kB
import time
from contextlib import suppress
import numpy as np
import torch
from tqdm import tqdm
import datetime
import os
import gc
from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
MixedPrecision,
BackwardPrefetch,
ShardingStrategy,
FullStateDictConfig,
StateDictType,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import (
transformer_auto_wrap_policy,
enable_wrap,
wrap,
)
from torch.utils.tensorboard import SummaryWriter
import logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s %(message)s',
datefmt='%m/%d %I:%M:%S',
)
def get_cast_dtype(precision: str):
cast_dtype = None
if precision == "bf16":
cast_dtype = torch.bfloat16
elif precision == "fp16":
cast_dtype = torch.float16
return cast_dtype
def get_autocast(precision):
if precision == "amp_fp16":
return lambda: torch.cuda.amp.autocast(dtype=torch.float16)
elif precision == "amp_bfloat16" or precision == "amp_bf16":
# amp_bfloat16 is more stable than amp float16 for clip training
return lambda: torch.cuda.amp.autocast(dtype=torch.bfloat16)
else:
return suppress
def get_sync(model, flag):
if flag:
return suppress
else:
return lambda: model.no_sync()
def train_one_epoch(
args,
model,
laion_loader,
pile_loader,
tokenizer,
optimizer,
lr_scheduler,
device_id,
writer: SummaryWriter,
optim_groups,
scaler,
total_laion_token: int,
total_pile_token: int,
total_laion_sample: int,
total_step: int,
):
world_size = torch.distributed.get_world_size()
autocast = get_autocast(args.precision)
cast_dtype = get_cast_dtype(args.precision)
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
if args.add_box:
box_token_id = tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1]
endofobject_token_id = tokenizer("<|#endofobject#|>", add_special_tokens=False)["input_ids"][-1]
endofattr_token_id = tokenizer("<|#endofattr#|>", add_special_tokens=False)["input_ids"][-1]
if args.use_format_v2:
prebox_token_id = tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]
previsual_token_id = tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
if args.rank == 0:
logging.info(f"train from: {total_step} step")
model.train()
# loop through dataloader
last_logging_step = total_step
last_save_step = total_step
for num_steps, (batch_laion, batch_pile) in tqdm(
enumerate(zip(laion_loader, pile_loader)),
disable=args.rank != 0 or "SLURM_PROCID" in os.environ,
total=args.num_steps * args.gradient_accumulation_steps,
initial=total_step * args.gradient_accumulation_steps,
):
#### LAION FORWARD PASS ####
images = (
batch_laion[0]
.to(device_id, dtype=cast_dtype, non_blocking=True)
.unsqueeze(1)
.unsqueeze(1)
)
image_nums = batch_laion[1]
image_start_index_list = batch_laion[2]
# TODO: OPT model: input_ids is not started with </s> while input_ids2 is?
input_ids = batch_laion[3].to(device_id, non_blocking=True).long()
attention_mask = batch_laion[4].to(device_id, dtype=cast_dtype, non_blocking=True)
added_bbox_list = [x.to(device_id) for x in batch_laion[5]] # list object
total_laion_token += int(attention_mask.sum().long()) * world_size
total_laion_sample += sum(image_nums) * world_size
labels = input_ids.clone()
if args.add_box:
labels[input_ids == visual_token_id] = -100
labels[input_ids == box_token_id] = -100
labels[input_ids == endofattr_token_id] = -100
if args.use_format_v2:
labels[input_ids == previsual_token_id] = -100
labels[input_ids == prebox_token_id] = -100
labels[torch.roll(input_ids == prebox_token_id, 1)] = -100
labels[torch.roll(input_ids == box_token_id, 1)] = -100
labels[:, 0] = -100
labels[input_ids == tokenizer.pad_token_id] = -100
labels[input_ids == media_token_id] = -100
labels[input_ids == endofmedia_token_id] = -100
labels.to(device_id)
current_laion_num = input_ids.shape[0]
#### PILE FORWARD PASS ####
if batch_pile is not None and batch_pile[0] is not None and batch_pile[1] is not None:
input_ids2 = batch_pile[0].to(device_id, non_blocking=True).long()
attention_mask2 = batch_pile[1].to(device_id, dtype=cast_dtype, non_blocking=True)
input_length = input_ids.shape[-1]
input_ids2 = torch.cat([input_ids2, torch.ones((input_ids2.shape[0], input_length - input_ids2.shape[1]), device=input_ids2.device, dtype=input_ids2.dtype) * tokenizer.pad_token_id], dim=-1)
attention_mask2 = torch.cat([attention_mask2, torch.zeros((attention_mask2.shape[0], input_length - attention_mask2.shape[1]), device=attention_mask2.device, dtype=attention_mask2.dtype)], dim=-1)
labels2 = input_ids2.clone()
labels2[labels2 == tokenizer.pad_token_id] = -100
labels2[:, 0] = -100
labels2.to(device_id)
if (num_steps != 0 and num_steps % args.pile_freq == 0) or args.pile_freq == 1:
image_nums = image_nums + [0] * len(input_ids2)
image_start_index_list = image_start_index_list + [[]] * len(input_ids2)
input_ids = torch.cat([input_ids, input_ids2], dim=0)
attention_mask = torch.cat([attention_mask, attention_mask2], dim=0)
labels = torch.cat([labels, labels2], dim=0)
total_pile_token += int(attention_mask2.sum().long()) * world_size
else:
del input_ids2
del attention_mask2
del labels2
if args.instruct:
answer_token_id = tokenizer(" Answer").input_ids[0]
answer_token_loc = (input_ids == answer_token_id).nonzero()
for batch_idx, idx in answer_token_loc:
labels[batch_idx][:idx+2] = -100
if args.relation and not args.instruct:
relations = batch_laion[6]
else:
relations = None
if len(added_bbox_list) == 0:
added_bbox_list = None
update_flag = (num_steps != 0 and num_steps % args.gradient_accumulation_steps == 0) or args.gradient_accumulation_steps == 1
# do_sync = get_sync(model, update_flag)
with autocast():
# modify:
# /gpfs/u/home/LMCG/LMCGljnn/scratch/miniconda3-ppc64le/envs/unified/lib/python3.9/site-packages/transformers/models/codegen/modeling_codegen.py
# /gpfs/u/home/LMCG/LMCGljnn/scratch/miniconda3-ppc64le/envs/unified/lib/python3.9/site-packages/transformers/models/opt/modeling_opt.py
# CrossEntropyLoss(reduction="none")
outputs = model(
vision_x=images,
lang_x=input_ids,
attention_mask=attention_mask,
labels=labels,
image_nums=image_nums,
image_start_index_list=image_start_index_list,
added_bbox_list=added_bbox_list,
add_box=args.add_box,
relations=relations,
)
loss_total = outputs.loss.reshape(labels.shape[0], -1)
loss_sample = loss_total.sum(-1) / (loss_total != 0).sum(-1)
loss_sample_for_laion = loss_sample[:current_laion_num]
nan_mask = torch.isnan(loss_sample_for_laion)
if nan_mask.sum() > 0:
logging.warning(f"caption NaN: {nan_mask}")
if nan_mask.sum() == len(loss_sample_for_laion) or not model.valid:
logging.info("WARNING: skip this caption loss due to some error")
loss_laion = torch.tensor(0.0).cuda()
else:
loss_laion = loss_sample_for_laion[~nan_mask].mean()
loss_caption = loss_laion
divided_loss_laion = loss_laion / args.gradient_accumulation_steps
if current_laion_num != loss_sample.shape[0]:
loss_pile = loss_sample[current_laion_num:].mean()
else:
loss_pile = torch.tensor(0.0).cuda()
divided_loss_pile = loss_pile / args.gradient_accumulation_steps
if "detection_losses" in outputs:
loss_det = outputs["detection_losses"]["loss"]
loss_iou = outputs["detection_losses"]["loss_iou"]
loss_obj = outputs["detection_losses"]["loss_obj"]
loss_cls = outputs["detection_losses"]["loss_cls"]
else:
loss_det = torch.tensor(0.0).cuda()
loss_iou = torch.tensor(0.0).cuda()
loss_obj = torch.tensor(0.0).cuda()
loss_cls = torch.tensor(0.0).cuda()
if "loss_dict" in outputs:
visual_loss_iou = outputs["loss_dict"][0]["loss_iou"]
previsual_loss_iou = outputs["loss_dict"][1]["loss_iou"]
visual_loss_obj = outputs["loss_dict"][0]["loss_obj"]
previsual_loss_obj = outputs["loss_dict"][1]["loss_obj"]
else:
visual_loss_iou = torch.tensor(0.0).cuda()
previsual_loss_iou = torch.tensor(0.0).cuda()
visual_loss_obj = torch.tensor(0.0).cuda()
previsual_loss_obj = torch.tensor(0.0).cuda()
divided_loss_det = loss_det / args.gradient_accumulation_steps
loss_rel = outputs.get("rel_loss", torch.tensor(0.0).cuda())
divided_loss_rel = loss_rel / args.gradient_accumulation_steps
loss = (
divided_loss_laion * args.loss_multiplier_laion +
divided_loss_pile * args.loss_multiplier_pile +
divided_loss_det * args.loss_multiplier_det +
divided_loss_rel * args.loss_multiplier_rel
)
scaler.scale(loss).backward()
# for logging only
loss = (
loss_laion * args.loss_multiplier_laion
+ loss_pile * args.loss_multiplier_pile
+ loss_det * args.loss_multiplier_det
+ loss_rel * args.loss_multiplier_rel
).detach()
# step optimizer and log
if update_flag:
#### MASK GRADIENTS FOR EMBEDDINGS ####
# Note (anas): Do not apply weight decay to embeddings as it will break this function.
# ! not an important point
# if args.ddp:
# def mask_embedding(m):
# if isinstance(m, torch.nn.Embedding) and m.weight.requires_grad:
# zero_mask = torch.zeros_like(m.weight.grad)
# zero_mask[media_token_id] = torch.ones_like(zero_mask[media_token_id])
# zero_mask[endofmedia_token_id] = torch.ones_like(zero_mask[endofmedia_token_id])
# m.weight.grad = m.weight.grad * zero_mask
# model.apply(mask_embedding)
total_step += 1
scaler.unscale_(optimizer)
if args.ddp:
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
else:
model.clip_grad_norm_(1.0)
scaler.step(optimizer)
scaler.update()
lr_scheduler.step()
optimizer.zero_grad()
# https://github.com/facebookresearch/fairscale/issues/627
model.zero_grad(set_to_none=True)
if args.rank == 0 and total_step % args.logging_steps == 0 and total_step != last_logging_step:
last_logging_step = total_step
global_step = total_step
lr = optimizer.param_groups[0]["lr"]
writer.add_scalar("lr", lr, global_step)
writer.add_scalar("scale", scaler.get_scale(), global_step)
writer.add_scalar("loss_groundcaption", loss_laion.item(), global_step)
writer.add_scalar("loss_laion", loss_caption.item(), global_step)
writer.add_scalar("loss_pile", loss_pile.item(), global_step)
writer.add_scalar("loss", loss.item(), global_step)
writer.add_scalar("loss_det", loss_det.item(), global_step)
writer.add_scalar("loss_iou", loss_iou.item(), global_step)
writer.add_scalar("loss_obj", loss_obj.item(), global_step)
writer.add_scalar("loss_cls", loss_cls.item(), global_step)
if loss_rel.item() != 0:
writer.add_scalar("loss_rel", loss_rel.item(), global_step)
if args.use_format_v2:
writer.add_scalar("loss_iou_visual", visual_loss_iou.item(), global_step)
writer.add_scalar("loss_obj_visual", visual_loss_obj.item(), global_step)
writer.add_scalar("loss_iou_previsual", previsual_loss_iou.item(), global_step)
writer.add_scalar("loss_obj_previsual", previsual_loss_obj.item(), global_step)
global_sample_num = total_laion_sample
writer.add_scalar("loss_groundcaption_vs_sample_num", loss_laion.item(), global_sample_num)
writer.add_scalar("loss_laion_vs_sample_num", loss_caption.item(), global_sample_num)
writer.add_scalar("loss_pile_vs_sample_num", loss_pile.item(), global_sample_num)
writer.add_scalar("loss_vs_sample_num", loss.item(), global_sample_num)
writer.add_scalar("loss_det_vs_sample_num", loss_det.item(), global_sample_num)
writer.add_scalar("loss_iou_vs_sample_num", loss_iou.item(), global_sample_num)
writer.add_scalar("loss_obj_vs_sample_num", loss_obj.item(), global_sample_num)
if loss_rel.item() != 0:
writer.add_scalar("loss_rel_vs_sample_num", loss_rel.item(), global_sample_num)
writer.add_scalar("lr_vs_sample_num", optimizer.param_groups[0]["lr"], global_sample_num)
writer.add_scalar("loss_groundcaption_vs_token", loss_laion.item(), total_laion_token)
writer.add_scalar("loss_laion_vs_token", loss_caption.item(), total_laion_token)
writer.add_scalar("loss_pile_vs_token", loss_pile.item(), total_pile_token)
writer.add_scalar("loss_det_vs_token", loss_det.item(), total_laion_token)
writer.add_scalar("loss_iou_vs_token", loss_iou.item(), total_laion_token)
writer.add_scalar("loss_obj_vs_token", loss_obj.item(), total_laion_token)
writer.add_scalar("loss_cls_vs_token", loss_cls.item(), total_laion_token)
if loss_rel.item() != 0:
writer.add_scalar("loss_rel_vs_token", loss_rel.item(), total_laion_token)
total_token = total_laion_token + total_pile_token
writer.add_scalar("sample_num", global_sample_num, global_step)
writer.add_scalar("total_laion_token", total_laion_token, global_step)
writer.add_scalar("total_pile_token", total_pile_token, global_step)
writer.add_scalar("total_token", total_token, global_step)
logging.info(
f"[{global_step}][{total_laion_sample}][{total_token}]. total: {loss.item():.3f} // laion: {loss_caption.item():.3f} // pile: {loss_pile.item():.3f} // iou: {loss_iou.item():.4f} // obj: {loss_obj.item():.4f} // previsual_obj: {previsual_loss_obj.item():.4f} // visual_obj: {visual_loss_obj.item():.4f} // previsual_iou: {previsual_loss_iou.item():.4f} // visual_iou: {visual_loss_iou.item():.4f} // lr: {lr:.2e} // scale: {scaler.get_scale()}"
)
if total_step % args.save_interval == 0 and total_step != last_save_step:
last_save_step = total_step
torch.distributed.barrier()
if args.ddp:
cpu_state = model.state_dict()
# if args.rank == 0:
# optimizer_state = optimizer.state_dict()
else:
save_policy = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
with FSDP.state_dict_type(
model, StateDictType.FULL_STATE_DICT, save_policy
):
cpu_state = model.state_dict()
torch.distributed.barrier()
# https://pytorch.org/docs/1.12/fsdp.html
# need to pass optim_groups as optim_input
# optimizer_state = FSDP.full_optim_state_dict(model, optimizer, optim_input=optim_groups)
if args.rank == 0:
checkpoint_dict = {
"model_state_dict": cpu_state,
# "optimizer_state_dict": optimizer_state,
"lr_scheduler_state_dict": lr_scheduler.state_dict(),
"scaler_state_dict": scaler.state_dict(),
"total_pile_token": total_pile_token,
"total_laion_token": total_laion_token,
"total_laion_sample": total_laion_sample,
"total_step": total_step,
}
logging.info(f"Saving checkpoint to {args.run_name}/checkpoint_{total_step}.pt")
torch.save(checkpoint_dict, f"{args.run_name}/checkpoint_{total_step}.pt")
del checkpoint_dict
if args.delete_previous_checkpoint and total_step-args.save_interval > 0 and (total_step-args.save_interval) % args.skip_delete_pattern != 0:
try:
os.remove(f"{args.run_name}/checkpoint_{total_step-args.save_interval}.pt")
except:
pass
torch.distributed.barrier()
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count