Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch CvT model. """ | |
import inspect | |
import unittest | |
from math import floor | |
from transformers import CvtConfig | |
from transformers.file_utils import cached_property, is_torch_available, is_vision_available | |
from transformers.testing_utils import require_torch, require_vision, slow, torch_device | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import CvtForImageClassification, CvtModel | |
from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST | |
if is_vision_available(): | |
from PIL import Image | |
from transformers import AutoFeatureExtractor | |
class CvtConfigTester(ConfigTester): | |
def create_and_test_config_common_properties(self): | |
config = self.config_class(**self.inputs_dict) | |
self.parent.assertTrue(hasattr(config, "embed_dim")) | |
self.parent.assertTrue(hasattr(config, "num_heads")) | |
class CvtModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
image_size=64, | |
num_channels=3, | |
embed_dim=[16, 48, 96], | |
num_heads=[1, 3, 6], | |
depth=[1, 2, 10], | |
patch_sizes=[7, 3, 3], | |
patch_stride=[4, 2, 2], | |
patch_padding=[2, 1, 1], | |
stride_kv=[2, 2, 2], | |
cls_token=[False, False, True], | |
attention_drop_rate=[0.0, 0.0, 0.0], | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
is_training=True, | |
use_labels=True, | |
num_labels=2, # Check | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.image_size = image_size | |
self.patch_sizes = patch_sizes | |
self.patch_stride = patch_stride | |
self.patch_padding = patch_padding | |
self.is_training = is_training | |
self.use_labels = use_labels | |
self.num_labels = num_labels | |
self.num_channels = num_channels | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.stride_kv = stride_kv | |
self.depth = depth | |
self.cls_token = cls_token | |
self.attention_drop_rate = attention_drop_rate | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
def prepare_config_and_inputs(self): | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
labels = None | |
if self.use_labels: | |
labels = ids_tensor([self.batch_size], self.num_labels) | |
config = self.get_config() | |
return config, pixel_values, labels | |
def get_config(self): | |
return CvtConfig( | |
image_size=self.image_size, | |
num_labels=self.num_labels, | |
num_channels=self.num_channels, | |
embed_dim=self.embed_dim, | |
num_heads=self.num_heads, | |
patch_sizes=self.patch_sizes, | |
patch_padding=self.patch_padding, | |
patch_stride=self.patch_stride, | |
stride_kv=self.stride_kv, | |
depth=self.depth, | |
cls_token=self.cls_token, | |
attention_drop_rate=self.attention_drop_rate, | |
initializer_range=self.initializer_range, | |
) | |
def create_and_check_model(self, config, pixel_values, labels): | |
model = CvtModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values) | |
image_size = (self.image_size, self.image_size) | |
height, width = image_size[0], image_size[1] | |
for i in range(len(self.depth)): | |
height = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) | |
width = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dim[-1], height, width)) | |
def create_and_check_for_image_classification(self, config, pixel_values, labels): | |
config.num_labels = self.num_labels | |
model = CvtForImageClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values, labels=labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, pixel_values, labels = config_and_inputs | |
inputs_dict = {"pixel_values": pixel_values} | |
return config, inputs_dict | |
class CvtModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
""" | |
Here we also overwrite some of the tests of test_modeling_common.py, as Cvt does not use input_ids, inputs_embeds, | |
attention_mask and seq_length. | |
""" | |
all_model_classes = (CvtModel, CvtForImageClassification) if is_torch_available() else () | |
pipeline_model_mapping = ( | |
{"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} | |
if is_torch_available() | |
else {} | |
) | |
test_pruning = False | |
test_torchscript = False | |
test_resize_embeddings = False | |
test_head_masking = False | |
has_attentions = False | |
def setUp(self): | |
self.model_tester = CvtModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=CvtConfig, has_text_modality=False, hidden_size=37) | |
def test_config(self): | |
self.create_and_test_config_common_properties() | |
self.config_tester.create_and_test_config_to_json_string() | |
self.config_tester.create_and_test_config_to_json_file() | |
self.config_tester.create_and_test_config_from_and_save_pretrained() | |
self.config_tester.create_and_test_config_with_num_labels() | |
self.config_tester.check_config_can_be_init_without_params() | |
self.config_tester.check_config_arguments_init() | |
def create_and_test_config_common_properties(self): | |
return | |
def test_attention_outputs(self): | |
pass | |
def test_inputs_embeds(self): | |
pass | |
def test_model_common_attributes(self): | |
pass | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["pixel_values"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_hidden_states_output(self): | |
def check_hidden_states_output(inputs_dict, config, model_class): | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
hidden_states = outputs.hidden_states | |
expected_num_layers = len(self.model_tester.depth) | |
self.assertEqual(len(hidden_states), expected_num_layers) | |
# verify the first hidden states (first block) | |
self.assertListEqual( | |
list(hidden_states[0].shape[-3:]), | |
[ | |
self.model_tester.embed_dim[0], | |
self.model_tester.image_size // 4, | |
self.model_tester.image_size // 4, | |
], | |
) | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
# check that output_hidden_states also work using config | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
def test_for_image_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_image_classification(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = CvtModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
return image | |
class CvtModelIntegrationTest(unittest.TestCase): | |
def default_feature_extractor(self): | |
return AutoFeatureExtractor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) | |
def test_inference_image_classification_head(self): | |
model = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(torch_device) | |
feature_extractor = self.default_feature_extractor | |
image = prepare_img() | |
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# verify the logits | |
expected_shape = torch.Size((1, 1000)) | |
self.assertEqual(outputs.logits.shape, expected_shape) | |
expected_slice = torch.tensor([0.9285, 0.9015, -0.3150]).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) | |