File size: 7,231 Bytes
1880ac6
4128c07
1880ac6
76d3fa1
0c22348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76d3fa1
1880ac6
 
3ce130a
 
1880ac6
3ce130a
 
1880ac6
3ce130a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4128c07
237ffdd
 
 
 
 
 
4128c07
 
 
 
 
 
 
 
 
 
 
 
3ce130a
 
 
 
 
 
 
4128c07
 
3ce130a
 
 
 
 
 
1880ac6
 
 
3ce130a
1880ac6
 
 
3ce130a
 
 
 
76d3fa1
3ce130a
76d3fa1
 
 
 
1880ac6
4f8bd37
76d3fa1
3ce130a
 
1880ac6
3ce130a
 
 
0c22348
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from typing import List, Tuple
import ast

class Agent:
    def __init__(self, agent_profile):
        self._id = agent_profile["agent_id"]
        
        self.agent_profile = agent_profile
        self.agent_id = agent_profile["agent_id"]
        self.name = self.get_name(agent_profile)
        self.background = self.get_background(agent_profile)
        self.secret = agent_profile["secret"]
        self.personality = agent_profile["personality_and_values"]
        self.goal = ""
        
    def get_name(self, agent_profile):
        return agent_profile["first_name"] + " " + agent_profile["last_name"]
    
    def get_background(self, agent_profile):
        name = self.name
        return f"{name} is a {agent_profile['age']}-year-old {agent_profile['gender'].lower()} {agent_profile['occupation']}. {agent_profile['public_info']}"
    
class Environment:
    
    def __init__(self, env_profile):
        self._id = env_profile["env_id"]
        
        self.environment_profile = env_profile
        self.codename = env_profile["codename"]
        self.scenario = env_profile["scenario"]
        self.agent_goals = env_profile["agent_goals"]
        self.relationship = env_profile["relationship"]
        
def get_format_guide():
    return """ Your available action types are
    "none action speak non-verbal communication leave".
    Note: You can "leave" this conversation if 1. you have achieved your social goals, 2. this conversation makes you uncomfortable, 3. you find it uninteresting/you lose your patience, 4. or for other reasons you want to leave.

    Please only generate a JSON string including the action type and the argument.
    Your action should follow the given format:
    \nAs an example, for the schema {\"properties\": {\"foo\": {\"title\": \"Foo\", \"description\": \"a list of strings\", \"type\": \"array\", \"items\": {\"type\": \"string\"}}}, \"required\": [\"foo\"]}
    the object {\"foo\": [\"bar\", \"baz\"]} is a well-formatted instance of the schema. The object {\"properties\": {\"foo\": [\"bar\", \"baz\"]}} is not well-formatted.
    \nHere is the output schema:\n```\n{\"description\": \"An interface for messages.\\nThere is only one required method: to_natural_language\", \"properties\": {\"action_type\": {\"title\": \"Action Type\", \"description\": \"whether to speak at this turn or choose to not do anything\", \"enum\": [\"none\", \"speak\", \"non-verbal communication\", \"action\", \"leave\"], \"type\": \"string\"}, \"argument\": {\"title\": \"Argument\", \"description\": \"the utterance if choose to speak, the expression or gesture if choose non-verbal communication, or the physical action if choose action\", \"type\": \"string\"}}, \"required\": [\"action_type\", \"argument\"]}\n```\u001b[0m
    """

def get_starter_prompt(machine_agent, human_agent, environment):
    return f"Prompt after formatting:\nImagine you are {machine_agent.name}, your task is to act/speak as {machine_agent.name} would, keeping in mind {machine_agent.name}'s social goal.\nYou can find {machine_agent.name}'s background and goal in the 'Here is the context of the interaction' field.\nNote that {machine_agent.name}'s secret and goal is only visible to you.\nYou should try your best to achieve {machine_agent.name}'s goal in a way that align with their character traits.\nAdditionally, maintaining the conversation's naturalness and realism is essential (e.g., do not repeat what other people has already said before).\n\nHere is the context of this interaction:\n Scenario: {environment.scenario}\nParticipants: {human_agent.name} and {machine_agent.name}\n{human_agent.name}'s background: {human_agent.background} Personality and values description: {human_agent.personality} \n{machine_agent.name}'s background: {machine_agent.background} Personality and values description: {machine_agent.personality} {machine_agent.name}'s secrets: {machine_agent.secret}\n{human_agent.name}'s goal: Unknown\n{machine_agent.name}'s goal: {environment.agent_goals[1]}\nConversation Starts:"


# we define history as
# [(user_message, bot_message), (user_message, bot_message)]

# we define dialogue history as
# user_name: user_message\nbot_name: bot_message\nuser_name: user_message\nbot_name: bot_message\n


def dialogue_history_length_check(string, max_token, tokenizer):
    prompt_tokens = len(tokenizer(string)["input_ids"])
    return max(prompt_tokens - max_token, 0)


def truncate_dialogue_history_to_length(dia_his, surpass_num, tokenizer):
    dia_sen = dia_his.split("\n")
    remove_len = 0
    i = 0
    while remove_len < surpass_num:
        remove_len += len(tokenizer(dia_sen[i])["input_ids"])
        i += 1
    trunc_dia = "\n".join(p for p in dia_sen[i:])
    return trunc_dia


def format_bot_message(bot_message) -> str:
    # import pdb; pdb.set_trace()
    start_idx, end_idx = bot_message.index("{"), bot_message.index("}")
    if end_idx == -1:
        bot_message += "'}"
        end_idx = len(bot_message)
    json_response = ast.literal_eval(bot_message[start_idx:end_idx+1])
    match json_response["action_type"]:
        case "none":
            return 'did nothing'
        case "speak":
            return json_response["argument"]
        case "non-verbal communication":
            return f'[{json_response["action_type"]}] {json_response["argument"]}'
        case "action":
            return f'[{json_response["action_type"]}] {json_response["argument"]}'
        case "leave":
            return 'left the conversation'
    
def dialogue_history_creation(history, user_name, bot_name):
    dialogue_history = ""
    for idx, turn in enumerate(history):
        user_message, bot_message = turn
        # TODOTODO (haofeiyu): we first assume that human talks first
        user_turn_idx = idx * 2
        bot_turn_idx = idx * 2 + 1
        if not bot_message.startswith("["): # if action type == speak, need to add 'said: ' to be consistent with the dialog prompt
            bot_message = "said :" + bot_message
        dialogue_history = f"{dialogue_history}\n\nTurn #{user_turn_idx}: {user_name}: {user_message}\n\nTurn #{bot_turn_idx}: {bot_name}: {bot_message}"
    last_turn_idx = len(history) * 2
    return dialogue_history, last_turn_idx


def dialogue_history_truncation(dialogue_history, max_token_num, tokenizer):
    surpass_num = dialogue_history_length_check(
        dialogue_history, max_token_num, tokenizer
    )
    if surpass_num > 0:
        dialogue_history = truncate_dialogue_history_to_length(
            dialogue_history, surpass_num, tokenizer
        )
    return dialogue_history


def format_sotopia_prompt(
    message: str,
    history: List[Tuple[str, str]],
    instructions: str,
    user_name: str,
    bot_name: str,
    include_all_chat_history: bool = True,
    index: int = 1,
    use_format_guide: bool = True,
) -> str:
    prompt = instructions.strip()
    dialogue_history, last_turn_idx = dialogue_history_creation(
        history, user_name, bot_name
    )
    prompt = f"{prompt}\n{dialogue_history}"
    prompt = f"{prompt}\n\nTurn #{last_turn_idx+1}: {user_name}: {message}\n.\nYou are at Turn #{last_turn_idx+2}."
    return prompt + get_format_guide() if use_format_guide else prompt