Spaces:
Runtime error
Runtime error
File size: 8,705 Bytes
a6dac9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
"""Pytorch impl of Gluon Xception
This is a port of the Gluon Xception code and weights, itself ported from a PyTorch DeepLab impl.
Gluon model: (https://gluon-cv.mxnet.io/_modules/gluoncv/model_zoo/xception.html)
Original PyTorch DeepLab impl: https://github.com/jfzhang95/pytorch-deeplab-xception
Hacked together by / Copyright 2020 Ross Wightman
"""
from collections import OrderedDict
import torch.nn as nn
import torch.nn.functional as F
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg
from .layers import create_classifier, get_padding
from .registry import register_model
__all__ = ['Xception65']
default_cfgs = {
'gluon_xception65': {
'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_xception-7015a15c.pth',
'input_size': (3, 299, 299),
'crop_pct': 0.903,
'pool_size': (10, 10),
'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN,
'std': IMAGENET_DEFAULT_STD,
'num_classes': 1000,
'first_conv': 'conv1',
'classifier': 'fc'
# The resize parameter of the validation transform should be 333, and make sure to center crop at 299x299
},
}
""" PADDING NOTES
The original PyTorch and Gluon impl of these models dutifully reproduced the
aligned padding added to Tensorflow models for Deeplab. This padding was compensating
for Tensorflow 'SAME' padding. PyTorch symmetric padding behaves the way we'd want it to.
"""
class SeparableConv2d(nn.Module):
def __init__(self, inplanes, planes, kernel_size=3, stride=1, dilation=1, bias=False, norm_layer=None):
super(SeparableConv2d, self).__init__()
self.kernel_size = kernel_size
self.dilation = dilation
# depthwise convolution
padding = get_padding(kernel_size, stride, dilation)
self.conv_dw = nn.Conv2d(
inplanes, inplanes, kernel_size, stride=stride,
padding=padding, dilation=dilation, groups=inplanes, bias=bias)
self.bn = norm_layer(num_features=inplanes)
# pointwise convolution
self.conv_pw = nn.Conv2d(inplanes, planes, kernel_size=1, bias=bias)
def forward(self, x):
x = self.conv_dw(x)
x = self.bn(x)
x = self.conv_pw(x)
return x
class Block(nn.Module):
def __init__(self, inplanes, planes, stride=1, dilation=1, start_with_relu=True, norm_layer=None):
super(Block, self).__init__()
if isinstance(planes, (list, tuple)):
assert len(planes) == 3
else:
planes = (planes,) * 3
outplanes = planes[-1]
if outplanes != inplanes or stride != 1:
self.skip = nn.Sequential()
self.skip.add_module('conv1', nn.Conv2d(
inplanes, outplanes, 1, stride=stride, bias=False)),
self.skip.add_module('bn1', norm_layer(num_features=outplanes))
else:
self.skip = None
rep = OrderedDict()
for i in range(3):
rep['act%d' % (i + 1)] = nn.ReLU(inplace=True)
rep['conv%d' % (i + 1)] = SeparableConv2d(
inplanes, planes[i], 3, stride=stride if i == 2 else 1, dilation=dilation, norm_layer=norm_layer)
rep['bn%d' % (i + 1)] = norm_layer(planes[i])
inplanes = planes[i]
if not start_with_relu:
del rep['act1']
else:
rep['act1'] = nn.ReLU(inplace=False)
self.rep = nn.Sequential(rep)
def forward(self, x):
skip = x
if self.skip is not None:
skip = self.skip(skip)
x = self.rep(x) + skip
return x
class Xception65(nn.Module):
"""Modified Aligned Xception.
NOTE: only the 65 layer version is included here, the 71 layer variant
was not correct and had no pretrained weights
"""
def __init__(self, num_classes=1000, in_chans=3, output_stride=32, norm_layer=nn.BatchNorm2d,
drop_rate=0., global_pool='avg'):
super(Xception65, self).__init__()
self.num_classes = num_classes
self.drop_rate = drop_rate
if output_stride == 32:
entry_block3_stride = 2
exit_block20_stride = 2
middle_dilation = 1
exit_dilation = (1, 1)
elif output_stride == 16:
entry_block3_stride = 2
exit_block20_stride = 1
middle_dilation = 1
exit_dilation = (1, 2)
elif output_stride == 8:
entry_block3_stride = 1
exit_block20_stride = 1
middle_dilation = 2
exit_dilation = (2, 4)
else:
raise NotImplementedError
# Entry flow
self.conv1 = nn.Conv2d(in_chans, 32, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = norm_layer(num_features=32)
self.act1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = norm_layer(num_features=64)
self.act2 = nn.ReLU(inplace=True)
self.block1 = Block(64, 128, stride=2, start_with_relu=False, norm_layer=norm_layer)
self.block1_act = nn.ReLU(inplace=True)
self.block2 = Block(128, 256, stride=2, start_with_relu=False, norm_layer=norm_layer)
self.block3 = Block(256, 728, stride=entry_block3_stride, norm_layer=norm_layer)
# Middle flow
self.mid = nn.Sequential(OrderedDict([('block%d' % i, Block(
728, 728, stride=1, dilation=middle_dilation, norm_layer=norm_layer)) for i in range(4, 20)]))
# Exit flow
self.block20 = Block(
728, (728, 1024, 1024), stride=exit_block20_stride, dilation=exit_dilation[0], norm_layer=norm_layer)
self.block20_act = nn.ReLU(inplace=True)
self.conv3 = SeparableConv2d(1024, 1536, 3, stride=1, dilation=exit_dilation[1], norm_layer=norm_layer)
self.bn3 = norm_layer(num_features=1536)
self.act3 = nn.ReLU(inplace=True)
self.conv4 = SeparableConv2d(1536, 1536, 3, stride=1, dilation=exit_dilation[1], norm_layer=norm_layer)
self.bn4 = norm_layer(num_features=1536)
self.act4 = nn.ReLU(inplace=True)
self.num_features = 2048
self.conv5 = SeparableConv2d(
1536, self.num_features, 3, stride=1, dilation=exit_dilation[1], norm_layer=norm_layer)
self.bn5 = norm_layer(num_features=self.num_features)
self.act5 = nn.ReLU(inplace=True)
self.feature_info = [
dict(num_chs=64, reduction=2, module='act2'),
dict(num_chs=128, reduction=4, module='block1_act'),
dict(num_chs=256, reduction=8, module='block3.rep.act1'),
dict(num_chs=728, reduction=16, module='block20.rep.act1'),
dict(num_chs=2048, reduction=32, module='act5'),
]
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
def get_classifier(self):
return self.fc
def reset_classifier(self, num_classes, global_pool='avg'):
self.num_classes = num_classes
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
def forward_features(self, x):
# Entry flow
x = self.conv1(x)
x = self.bn1(x)
x = self.act1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.act2(x)
x = self.block1(x)
x = self.block1_act(x)
# c1 = x
x = self.block2(x)
# c2 = x
x = self.block3(x)
# Middle flow
x = self.mid(x)
# c3 = x
# Exit flow
x = self.block20(x)
x = self.block20_act(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.act3(x)
x = self.conv4(x)
x = self.bn4(x)
x = self.act4(x)
x = self.conv5(x)
x = self.bn5(x)
x = self.act5(x)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.global_pool(x)
if self.drop_rate:
F.dropout(x, self.drop_rate, training=self.training)
x = self.fc(x)
return x
def _create_gluon_xception(variant, pretrained=False, **kwargs):
return build_model_with_cfg(
Xception65, variant, pretrained,
default_cfg=default_cfgs[variant],
feature_cfg=dict(feature_cls='hook'),
**kwargs)
@register_model
def gluon_xception65(pretrained=False, **kwargs):
""" Modified Aligned Xception-65
"""
return _create_gluon_xception('gluon_xception65', pretrained, **kwargs)
|