File size: 3,542 Bytes
a6dac9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
""" Normalization + Activation Layers
"""
import torch
from torch import nn as nn
from torch.nn import functional as F

from .create_act import get_act_layer


class BatchNormAct2d(nn.BatchNorm2d):
    """BatchNorm + Activation

    This module performs BatchNorm + Activation in a manner that will remain backwards
    compatible with weights trained with separate bn, act. This is why we inherit from BN
    instead of composing it as a .bn member.
    """
    def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True,
                 apply_act=True, act_layer=nn.ReLU, inplace=True, drop_block=None):
        super(BatchNormAct2d, self).__init__(
            num_features, eps=eps, momentum=momentum, affine=affine, track_running_stats=track_running_stats)
        if isinstance(act_layer, str):
            act_layer = get_act_layer(act_layer)
        if act_layer is not None and apply_act:
            act_args = dict(inplace=True) if inplace else {}
            self.act = act_layer(**act_args)
        else:
            self.act = nn.Identity()

    def _forward_jit(self, x):
        """ A cut & paste of the contents of the PyTorch BatchNorm2d forward function
        """
        # exponential_average_factor is self.momentum set to
        # (when it is available) only so that if gets updated
        # in ONNX graph when this node is exported to ONNX.
        if self.momentum is None:
            exponential_average_factor = 0.0
        else:
            exponential_average_factor = self.momentum

        if self.training and self.track_running_stats:
            # TODO: if statement only here to tell the jit to skip emitting this when it is None
            if self.num_batches_tracked is not None:
                self.num_batches_tracked += 1
                if self.momentum is None:  # use cumulative moving average
                    exponential_average_factor = 1.0 / float(self.num_batches_tracked)
                else:  # use exponential moving average
                    exponential_average_factor = self.momentum

        x = F.batch_norm(
                x, self.running_mean, self.running_var, self.weight, self.bias,
                self.training or not self.track_running_stats,
                exponential_average_factor, self.eps)
        return x

    @torch.jit.ignore
    def _forward_python(self, x):
        return super(BatchNormAct2d, self).forward(x)

    def forward(self, x):
        # FIXME cannot call parent forward() and maintain jit.script compatibility?
        if torch.jit.is_scripting():
            x = self._forward_jit(x)
        else:
            x = self._forward_python(x)
        x = self.act(x)
        return x


class GroupNormAct(nn.GroupNorm):
    # NOTE num_channel and num_groups order flipped for easier layer swaps / binding of fixed args
    def __init__(self, num_channels, num_groups, eps=1e-5, affine=True,
                 apply_act=True, act_layer=nn.ReLU, inplace=True, drop_block=None):
        super(GroupNormAct, self).__init__(num_groups, num_channels, eps=eps, affine=affine)
        if isinstance(act_layer, str):
            act_layer = get_act_layer(act_layer)
        if act_layer is not None and apply_act:
            act_args = dict(inplace=True) if inplace else {}
            self.act = act_layer(**act_args)
        else:
            self.act = nn.Identity()

    def forward(self, x):
        x = F.group_norm(x, self.num_groups, self.weight, self.bias, self.eps)
        x = self.act(x)
        return x