File size: 14,961 Bytes
a6dac9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
"""
 pnasnet5large implementation grabbed from Cadene's pretrained models
 Additional credit to https://github.com/creafz

 https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/pnasnet.py

"""
from collections import OrderedDict
from functools import partial

import torch
import torch.nn as nn
import torch.nn.functional as F

from .helpers import build_model_with_cfg
from .layers import ConvBnAct, create_conv2d, create_pool2d, create_classifier
from .registry import register_model

__all__ = ['PNASNet5Large']

default_cfgs = {
    'pnasnet5large': {
        'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/pnasnet5large-bf079911.pth',
        'input_size': (3, 331, 331),
        'pool_size': (11, 11),
        'crop_pct': 0.911,
        'interpolation': 'bicubic',
        'mean': (0.5, 0.5, 0.5),
        'std': (0.5, 0.5, 0.5),
        'num_classes': 1000,
        'first_conv': 'conv_0.conv',
        'classifier': 'last_linear',
        'label_offset': 1,  # 1001 classes in pretrained weights
    },
}


class SeparableConv2d(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_size, stride, padding=''):
        super(SeparableConv2d, self).__init__()
        self.depthwise_conv2d = create_conv2d(
            in_channels, in_channels, kernel_size=kernel_size,
            stride=stride, padding=padding, groups=in_channels)
        self.pointwise_conv2d = create_conv2d(
            in_channels, out_channels, kernel_size=1, padding=padding)

    def forward(self, x):
        x = self.depthwise_conv2d(x)
        x = self.pointwise_conv2d(x)
        return x


class BranchSeparables(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_size, stride=1, stem_cell=False, padding=''):
        super(BranchSeparables, self).__init__()
        middle_channels = out_channels if stem_cell else in_channels
        self.act_1 = nn.ReLU()
        self.separable_1 = SeparableConv2d(
            in_channels, middle_channels, kernel_size, stride=stride, padding=padding)
        self.bn_sep_1 = nn.BatchNorm2d(middle_channels, eps=0.001)
        self.act_2 = nn.ReLU()
        self.separable_2 = SeparableConv2d(
            middle_channels, out_channels, kernel_size, stride=1, padding=padding)
        self.bn_sep_2 = nn.BatchNorm2d(out_channels, eps=0.001)

    def forward(self, x):
        x = self.act_1(x)
        x = self.separable_1(x)
        x = self.bn_sep_1(x)
        x = self.act_2(x)
        x = self.separable_2(x)
        x = self.bn_sep_2(x)
        return x


class ActConvBn(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=''):
        super(ActConvBn, self).__init__()
        self.act = nn.ReLU()
        self.conv = create_conv2d(
            in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
        self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

    def forward(self, x):
        x = self.act(x)
        x = self.conv(x)
        x = self.bn(x)
        return x


class FactorizedReduction(nn.Module):

    def __init__(self, in_channels, out_channels, padding=''):
        super(FactorizedReduction, self).__init__()
        self.act = nn.ReLU()
        self.path_1 = nn.Sequential(OrderedDict([
            ('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)),
            ('conv', create_conv2d(in_channels, out_channels // 2, kernel_size=1, padding=padding)),
        ]))
        self.path_2 = nn.Sequential(OrderedDict([
            ('pad', nn.ZeroPad2d((-1, 1, -1, 1))),  # shift
            ('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)),
            ('conv', create_conv2d(in_channels, out_channels // 2, kernel_size=1, padding=padding)),
        ]))
        self.final_path_bn = nn.BatchNorm2d(out_channels, eps=0.001)

    def forward(self, x):
        x = self.act(x)
        x_path1 = self.path_1(x)
        x_path2 = self.path_2(x)
        out = self.final_path_bn(torch.cat([x_path1, x_path2], 1))
        return out


class CellBase(nn.Module):

    def cell_forward(self, x_left, x_right):
        x_comb_iter_0_left = self.comb_iter_0_left(x_left)
        x_comb_iter_0_right = self.comb_iter_0_right(x_left)
        x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right

        x_comb_iter_1_left = self.comb_iter_1_left(x_right)
        x_comb_iter_1_right = self.comb_iter_1_right(x_right)
        x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right

        x_comb_iter_2_left = self.comb_iter_2_left(x_right)
        x_comb_iter_2_right = self.comb_iter_2_right(x_right)
        x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right

        x_comb_iter_3_left = self.comb_iter_3_left(x_comb_iter_2)
        x_comb_iter_3_right = self.comb_iter_3_right(x_right)
        x_comb_iter_3 = x_comb_iter_3_left + x_comb_iter_3_right

        x_comb_iter_4_left = self.comb_iter_4_left(x_left)
        if self.comb_iter_4_right is not None:
            x_comb_iter_4_right = self.comb_iter_4_right(x_right)
        else:
            x_comb_iter_4_right = x_right
        x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right

        x_out = torch.cat([x_comb_iter_0, x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1)
        return x_out


class CellStem0(CellBase):

    def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''):
        super(CellStem0, self).__init__()
        self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, kernel_size=1, padding=pad_type)

        self.comb_iter_0_left = BranchSeparables(
            in_chs_left, out_chs_left, kernel_size=5, stride=2, stem_cell=True, padding=pad_type)
        self.comb_iter_0_right = nn.Sequential(OrderedDict([
            ('max_pool', create_pool2d('max', 3, stride=2, padding=pad_type)),
            ('conv', create_conv2d(in_chs_left, out_chs_left, kernel_size=1, padding=pad_type)),
            ('bn', nn.BatchNorm2d(out_chs_left, eps=0.001)),
        ]))

        self.comb_iter_1_left = BranchSeparables(
            out_chs_right, out_chs_right, kernel_size=7, stride=2, padding=pad_type)
        self.comb_iter_1_right = create_pool2d('max', 3, stride=2, padding=pad_type)

        self.comb_iter_2_left = BranchSeparables(
            out_chs_right, out_chs_right, kernel_size=5, stride=2, padding=pad_type)
        self.comb_iter_2_right = BranchSeparables(
            out_chs_right, out_chs_right, kernel_size=3, stride=2, padding=pad_type)

        self.comb_iter_3_left = BranchSeparables(
            out_chs_right, out_chs_right, kernel_size=3, padding=pad_type)
        self.comb_iter_3_right = create_pool2d('max', 3, stride=2, padding=pad_type)

        self.comb_iter_4_left = BranchSeparables(
            in_chs_right, out_chs_right, kernel_size=3, stride=2, stem_cell=True, padding=pad_type)
        self.comb_iter_4_right = ActConvBn(
            out_chs_right, out_chs_right, kernel_size=1, stride=2, padding=pad_type)

    def forward(self, x_left):
        x_right = self.conv_1x1(x_left)
        x_out = self.cell_forward(x_left, x_right)
        return x_out


class Cell(CellBase):

    def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type='',
                 is_reduction=False, match_prev_layer_dims=False):
        super(Cell, self).__init__()

        # If `is_reduction` is set to `True` stride 2 is used for
        # convolution and pooling layers to reduce the spatial size of
        # the output of a cell approximately by a factor of 2.
        stride = 2 if is_reduction else 1

        # If `match_prev_layer_dimensions` is set to `True`
        # `FactorizedReduction` is used to reduce the spatial size
        # of the left input of a cell approximately by a factor of 2.
        self.match_prev_layer_dimensions = match_prev_layer_dims
        if match_prev_layer_dims:
            self.conv_prev_1x1 = FactorizedReduction(in_chs_left, out_chs_left, padding=pad_type)
        else:
            self.conv_prev_1x1 = ActConvBn(in_chs_left, out_chs_left, kernel_size=1, padding=pad_type)
        self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, kernel_size=1, padding=pad_type)

        self.comb_iter_0_left = BranchSeparables(
            out_chs_left, out_chs_left, kernel_size=5, stride=stride, padding=pad_type)
        self.comb_iter_0_right = create_pool2d('max', 3, stride=stride, padding=pad_type)

        self.comb_iter_1_left = BranchSeparables(
            out_chs_right, out_chs_right, kernel_size=7, stride=stride, padding=pad_type)
        self.comb_iter_1_right = create_pool2d('max', 3, stride=stride, padding=pad_type)

        self.comb_iter_2_left = BranchSeparables(
            out_chs_right, out_chs_right, kernel_size=5, stride=stride, padding=pad_type)
        self.comb_iter_2_right = BranchSeparables(
            out_chs_right, out_chs_right, kernel_size=3, stride=stride, padding=pad_type)

        self.comb_iter_3_left = BranchSeparables(out_chs_right, out_chs_right, kernel_size=3)
        self.comb_iter_3_right = create_pool2d('max', 3, stride=stride, padding=pad_type)

        self.comb_iter_4_left = BranchSeparables(
            out_chs_left, out_chs_left, kernel_size=3, stride=stride, padding=pad_type)
        if is_reduction:
            self.comb_iter_4_right = ActConvBn(
                out_chs_right, out_chs_right, kernel_size=1, stride=stride, padding=pad_type)
        else:
            self.comb_iter_4_right = None

    def forward(self, x_left, x_right):
        x_left = self.conv_prev_1x1(x_left)
        x_right = self.conv_1x1(x_right)
        x_out = self.cell_forward(x_left, x_right)
        return x_out


class PNASNet5Large(nn.Module):
    def __init__(self, num_classes=1000, in_chans=3, output_stride=32, drop_rate=0., global_pool='avg', pad_type=''):
        super(PNASNet5Large, self).__init__()
        self.num_classes = num_classes
        self.drop_rate = drop_rate
        self.num_features = 4320
        assert output_stride == 32

        self.conv_0 = ConvBnAct(
            in_chans, 96, kernel_size=3, stride=2, padding=0,
            norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.1), apply_act=False)

        self.cell_stem_0 = CellStem0(
            in_chs_left=96, out_chs_left=54, in_chs_right=96, out_chs_right=54, pad_type=pad_type)

        self.cell_stem_1 = Cell(
            in_chs_left=96, out_chs_left=108, in_chs_right=270, out_chs_right=108, pad_type=pad_type,
            match_prev_layer_dims=True, is_reduction=True)
        self.cell_0 = Cell(
            in_chs_left=270, out_chs_left=216, in_chs_right=540, out_chs_right=216, pad_type=pad_type,
            match_prev_layer_dims=True)
        self.cell_1 = Cell(
            in_chs_left=540, out_chs_left=216, in_chs_right=1080, out_chs_right=216, pad_type=pad_type)
        self.cell_2 = Cell(
            in_chs_left=1080, out_chs_left=216, in_chs_right=1080, out_chs_right=216, pad_type=pad_type)
        self.cell_3 = Cell(
            in_chs_left=1080, out_chs_left=216, in_chs_right=1080, out_chs_right=216, pad_type=pad_type)

        self.cell_4 = Cell(
            in_chs_left=1080, out_chs_left=432, in_chs_right=1080, out_chs_right=432, pad_type=pad_type,
            is_reduction=True)
        self.cell_5 = Cell(
            in_chs_left=1080, out_chs_left=432, in_chs_right=2160, out_chs_right=432, pad_type=pad_type,
            match_prev_layer_dims=True)
        self.cell_6 = Cell(
            in_chs_left=2160, out_chs_left=432, in_chs_right=2160, out_chs_right=432, pad_type=pad_type)
        self.cell_7 = Cell(
            in_chs_left=2160, out_chs_left=432, in_chs_right=2160, out_chs_right=432, pad_type=pad_type)

        self.cell_8 = Cell(
            in_chs_left=2160, out_chs_left=864, in_chs_right=2160, out_chs_right=864, pad_type=pad_type,
            is_reduction=True)
        self.cell_9 = Cell(
            in_chs_left=2160, out_chs_left=864, in_chs_right=4320, out_chs_right=864, pad_type=pad_type,
            match_prev_layer_dims=True)
        self.cell_10 = Cell(
            in_chs_left=4320, out_chs_left=864, in_chs_right=4320, out_chs_right=864, pad_type=pad_type)
        self.cell_11 = Cell(
            in_chs_left=4320, out_chs_left=864, in_chs_right=4320, out_chs_right=864, pad_type=pad_type)
        self.act = nn.ReLU()
        self.feature_info = [
            dict(num_chs=96, reduction=2, module='conv_0'),
            dict(num_chs=270, reduction=4, module='cell_stem_1.conv_1x1.act'),
            dict(num_chs=1080, reduction=8, module='cell_4.conv_1x1.act'),
            dict(num_chs=2160, reduction=16, module='cell_8.conv_1x1.act'),
            dict(num_chs=4320, reduction=32, module='act'),
        ]

        self.global_pool, self.last_linear = create_classifier(
            self.num_features, self.num_classes, pool_type=global_pool)

    def get_classifier(self):
        return self.last_linear

    def reset_classifier(self, num_classes, global_pool='avg'):
        self.num_classes = num_classes
        self.global_pool, self.last_linear = create_classifier(
            self.num_features, self.num_classes, pool_type=global_pool)

    def forward_features(self, x):
        x_conv_0 = self.conv_0(x)
        x_stem_0 = self.cell_stem_0(x_conv_0)
        x_stem_1 = self.cell_stem_1(x_conv_0, x_stem_0)
        x_cell_0 = self.cell_0(x_stem_0, x_stem_1)
        x_cell_1 = self.cell_1(x_stem_1, x_cell_0)
        x_cell_2 = self.cell_2(x_cell_0, x_cell_1)
        x_cell_3 = self.cell_3(x_cell_1, x_cell_2)
        x_cell_4 = self.cell_4(x_cell_2, x_cell_3)
        x_cell_5 = self.cell_5(x_cell_3, x_cell_4)
        x_cell_6 = self.cell_6(x_cell_4, x_cell_5)
        x_cell_7 = self.cell_7(x_cell_5, x_cell_6)
        x_cell_8 = self.cell_8(x_cell_6, x_cell_7)
        x_cell_9 = self.cell_9(x_cell_7, x_cell_8)
        x_cell_10 = self.cell_10(x_cell_8, x_cell_9)
        x_cell_11 = self.cell_11(x_cell_9, x_cell_10)
        x = self.act(x_cell_11)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = self.global_pool(x)
        if self.drop_rate > 0:
            x = F.dropout(x, self.drop_rate, training=self.training)
        x = self.last_linear(x)
        return x


def _create_pnasnet(variant, pretrained=False, **kwargs):
    return build_model_with_cfg(
        PNASNet5Large, variant, pretrained,
        default_cfg=default_cfgs[variant],
        feature_cfg=dict(feature_cls='hook', no_rewrite=True),  # not possible to re-write this model
        **kwargs)


@register_model
def pnasnet5large(pretrained=False, **kwargs):
    r"""PNASNet-5 model architecture from the
    `"Progressive Neural Architecture Search"
    <https://arxiv.org/abs/1712.00559>`_ paper.
    """
    model_kwargs = dict(pad_type='same', **kwargs)
    return _create_pnasnet('pnasnet5large', pretrained, **model_kwargs)