Multimodal-CoT / timm /data /parsers /parser_image_in_tar.py
cooelf's picture
update
a6dac9a
raw
history blame
8.99 kB
""" A dataset parser that reads tarfile based datasets
This parser can read and extract image samples from:
* a single tar of image files
* a folder of multiple tarfiles containing imagefiles
* a tar of tars containing image files
Labels are based on the combined folder and/or tar name structure.
Hacked together by / Copyright 2020 Ross Wightman
"""
import os
import tarfile
import pickle
import logging
import numpy as np
from glob import glob
from typing import List, Dict
from timm.utils.misc import natural_key
from .parser import Parser
from .class_map import load_class_map
from .constants import IMG_EXTENSIONS
_logger = logging.getLogger(__name__)
CACHE_FILENAME_SUFFIX = '_tarinfos.pickle'
class TarState:
def __init__(self, tf: tarfile.TarFile = None, ti: tarfile.TarInfo = None):
self.tf: tarfile.TarFile = tf
self.ti: tarfile.TarInfo = ti
self.children: Dict[str, TarState] = {} # child states (tars within tars)
def reset(self):
self.tf = None
def _extract_tarinfo(tf: tarfile.TarFile, parent_info: Dict, extensions=IMG_EXTENSIONS):
sample_count = 0
for i, ti in enumerate(tf):
if not ti.isfile():
continue
dirname, basename = os.path.split(ti.path)
name, ext = os.path.splitext(basename)
ext = ext.lower()
if ext == '.tar':
with tarfile.open(fileobj=tf.extractfile(ti), mode='r|') as ctf:
child_info = dict(
name=ti.name, path=os.path.join(parent_info['path'], name), ti=ti, children=[], samples=[])
sample_count += _extract_tarinfo(ctf, child_info, extensions=extensions)
_logger.debug(f'{i}/?. Extracted child tarinfos from {ti.name}. {len(child_info["samples"])} images.')
parent_info['children'].append(child_info)
elif ext in extensions:
parent_info['samples'].append(ti)
sample_count += 1
return sample_count
def extract_tarinfos(root, class_name_to_idx=None, cache_tarinfo=None, extensions=IMG_EXTENSIONS, sort=True):
root_is_tar = False
if os.path.isfile(root):
assert os.path.splitext(root)[-1].lower() == '.tar'
tar_filenames = [root]
root, root_name = os.path.split(root)
root_name = os.path.splitext(root_name)[0]
root_is_tar = True
else:
root_name = root.strip(os.path.sep).split(os.path.sep)[-1]
tar_filenames = glob(os.path.join(root, '*.tar'), recursive=True)
num_tars = len(tar_filenames)
tar_bytes = sum([os.path.getsize(f) for f in tar_filenames])
assert num_tars, f'No .tar files found at specified path ({root}).'
_logger.info(f'Scanning {tar_bytes/1024**2:.2f}MB of tar files...')
info = dict(tartrees=[])
cache_path = ''
if cache_tarinfo is None:
cache_tarinfo = True if tar_bytes > 10*1024**3 else False # FIXME magic number, 10GB
if cache_tarinfo:
cache_filename = '_' + root_name + CACHE_FILENAME_SUFFIX
cache_path = os.path.join(root, cache_filename)
if os.path.exists(cache_path):
_logger.info(f'Reading tar info from cache file {cache_path}.')
with open(cache_path, 'rb') as pf:
info = pickle.load(pf)
assert len(info['tartrees']) == num_tars, "Cached tartree len doesn't match number of tarfiles"
else:
for i, fn in enumerate(tar_filenames):
path = '' if root_is_tar else os.path.splitext(os.path.basename(fn))[0]
with tarfile.open(fn, mode='r|') as tf: # tarinfo scans done in streaming mode
parent_info = dict(name=os.path.relpath(fn, root), path=path, ti=None, children=[], samples=[])
num_samples = _extract_tarinfo(tf, parent_info, extensions=extensions)
num_children = len(parent_info["children"])
_logger.debug(
f'{i}/{num_tars}. Extracted tarinfos from {fn}. {num_children} children, {num_samples} samples.')
info['tartrees'].append(parent_info)
if cache_path:
_logger.info(f'Writing tar info to cache file {cache_path}.')
with open(cache_path, 'wb') as pf:
pickle.dump(info, pf)
samples = []
labels = []
build_class_map = False
if class_name_to_idx is None:
build_class_map = True
# Flatten tartree info into lists of samples and targets w/ targets based on label id via
# class map arg or from unique paths.
# NOTE: currently only flattening up to two-levels, filesystem .tars and then one level of sub-tar children
# this covers my current use cases and keeps things a little easier to test for now.
tarfiles = []
def _label_from_paths(*path, leaf_only=True):
path = os.path.join(*path).strip(os.path.sep)
return path.split(os.path.sep)[-1] if leaf_only else path.replace(os.path.sep, '_')
def _add_samples(info, fn):
added = 0
for s in info['samples']:
label = _label_from_paths(info['path'], os.path.dirname(s.path))
if not build_class_map and label not in class_name_to_idx:
continue
samples.append((s, fn, info['ti']))
labels.append(label)
added += 1
return added
_logger.info(f'Collecting samples and building tar states.')
for parent_info in info['tartrees']:
# if tartree has children, we assume all samples are at the child level
tar_name = None if root_is_tar else parent_info['name']
tar_state = TarState()
parent_added = 0
for child_info in parent_info['children']:
child_added = _add_samples(child_info, fn=tar_name)
if child_added:
tar_state.children[child_info['name']] = TarState(ti=child_info['ti'])
parent_added += child_added
parent_added += _add_samples(parent_info, fn=tar_name)
if parent_added:
tarfiles.append((tar_name, tar_state))
del info
if build_class_map:
# build class index
sorted_labels = list(sorted(set(labels), key=natural_key))
class_name_to_idx = {c: idx for idx, c in enumerate(sorted_labels)}
_logger.info(f'Mapping targets and sorting samples.')
samples_and_targets = [(s, class_name_to_idx[l]) for s, l in zip(samples, labels) if l in class_name_to_idx]
if sort:
samples_and_targets = sorted(samples_and_targets, key=lambda k: natural_key(k[0][0].path))
samples, targets = zip(*samples_and_targets)
samples = np.array(samples)
targets = np.array(targets)
_logger.info(f'Finished processing {len(samples)} samples across {len(tarfiles)} tar files.')
return samples, targets, class_name_to_idx, tarfiles
class ParserImageInTar(Parser):
""" Multi-tarfile dataset parser where there is one .tar file per class
"""
def __init__(self, root, class_map='', cache_tarfiles=True, cache_tarinfo=None):
super().__init__()
class_name_to_idx = None
if class_map:
class_name_to_idx = load_class_map(class_map, root)
self.root = root
self.samples, self.targets, self.class_name_to_idx, tarfiles = extract_tarinfos(
self.root,
class_name_to_idx=class_name_to_idx,
cache_tarinfo=cache_tarinfo,
extensions=IMG_EXTENSIONS)
self.class_idx_to_name = {v: k for k, v in self.class_name_to_idx.items()}
if len(tarfiles) == 1 and tarfiles[0][0] is None:
self.root_is_tar = True
self.tar_state = tarfiles[0][1]
else:
self.root_is_tar = False
self.tar_state = dict(tarfiles)
self.cache_tarfiles = cache_tarfiles
def __len__(self):
return len(self.samples)
def __getitem__(self, index):
sample = self.samples[index]
target = self.targets[index]
sample_ti, parent_fn, child_ti = sample
parent_abs = os.path.join(self.root, parent_fn) if parent_fn else self.root
tf = None
cache_state = None
if self.cache_tarfiles:
cache_state = self.tar_state if self.root_is_tar else self.tar_state[parent_fn]
tf = cache_state.tf
if tf is None:
tf = tarfile.open(parent_abs)
if self.cache_tarfiles:
cache_state.tf = tf
if child_ti is not None:
ctf = cache_state.children[child_ti.name].tf if self.cache_tarfiles else None
if ctf is None:
ctf = tarfile.open(fileobj=tf.extractfile(child_ti))
if self.cache_tarfiles:
cache_state.children[child_ti.name].tf = ctf
tf = ctf
return tf.extractfile(sample_ti), target
def _filename(self, index, basename=False, absolute=False):
filename = self.samples[index][0].name
if basename:
filename = os.path.basename(filename)
return filename