Spaces:
Runtime error
Runtime error
import json | |
import logging | |
import os | |
from functools import partial | |
from typing import Union, Optional | |
import torch | |
from torch.hub import load_state_dict_from_url, download_url_to_file, urlparse, HASH_REGEX | |
try: | |
from torch.hub import get_dir | |
except ImportError: | |
from torch.hub import _get_torch_home as get_dir | |
from timm import __version__ | |
try: | |
from huggingface_hub import hf_hub_url | |
from huggingface_hub import cached_download | |
cached_download = partial(cached_download, library_name="timm", library_version=__version__) | |
except ImportError: | |
hf_hub_url = None | |
cached_download = None | |
_logger = logging.getLogger(__name__) | |
def get_cache_dir(child_dir=''): | |
""" | |
Returns the location of the directory where models are cached (and creates it if necessary). | |
""" | |
# Issue warning to move data if old env is set | |
if os.getenv('TORCH_MODEL_ZOO'): | |
_logger.warning('TORCH_MODEL_ZOO is deprecated, please use env TORCH_HOME instead') | |
hub_dir = get_dir() | |
child_dir = () if not child_dir else (child_dir,) | |
model_dir = os.path.join(hub_dir, 'checkpoints', *child_dir) | |
os.makedirs(model_dir, exist_ok=True) | |
return model_dir | |
def download_cached_file(url, check_hash=True, progress=False): | |
parts = urlparse(url) | |
filename = os.path.basename(parts.path) | |
cached_file = os.path.join(get_cache_dir(), filename) | |
if not os.path.exists(cached_file): | |
_logger.info('Downloading: "{}" to {}\n'.format(url, cached_file)) | |
hash_prefix = None | |
if check_hash: | |
r = HASH_REGEX.search(filename) # r is Optional[Match[str]] | |
hash_prefix = r.group(1) if r else None | |
download_url_to_file(url, cached_file, hash_prefix, progress=progress) | |
return cached_file | |
def has_hf_hub(necessary=False): | |
if hf_hub_url is None and necessary: | |
# if no HF Hub module installed and it is necessary to continue, raise error | |
raise RuntimeError( | |
'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.') | |
return hf_hub_url is not None | |
def hf_split(hf_id): | |
rev_split = hf_id.split('@') | |
assert 0 < len(rev_split) <= 2, 'hf_hub id should only contain one @ character to identify revision.' | |
hf_model_id = rev_split[0] | |
hf_revision = rev_split[-1] if len(rev_split) > 1 else None | |
return hf_model_id, hf_revision | |
def load_cfg_from_json(json_file: Union[str, os.PathLike]): | |
with open(json_file, "r", encoding="utf-8") as reader: | |
text = reader.read() | |
return json.loads(text) | |
def _download_from_hf(model_id: str, filename: str): | |
hf_model_id, hf_revision = hf_split(model_id) | |
url = hf_hub_url(hf_model_id, filename, revision=hf_revision) | |
return cached_download(url, cache_dir=get_cache_dir('hf')) | |
def load_model_config_from_hf(model_id: str): | |
assert has_hf_hub(True) | |
cached_file = _download_from_hf(model_id, 'config.json') | |
default_cfg = load_cfg_from_json(cached_file) | |
default_cfg['hf_hub'] = model_id # insert hf_hub id for pretrained weight load during model creation | |
model_name = default_cfg.get('architecture') | |
return default_cfg, model_name | |
def load_state_dict_from_hf(model_id: str): | |
assert has_hf_hub(True) | |
cached_file = _download_from_hf(model_id, 'pytorch_model.bin') | |
state_dict = torch.load(cached_file, map_location='cpu') | |
return state_dict | |