Spaces:
Runtime error
Runtime error
""" MobileNet V3 | |
A PyTorch impl of MobileNet-V3, compatible with TF weights from official impl. | |
Paper: Searching for MobileNetV3 - https://arxiv.org/abs/1905.02244 | |
Hacked together by / Copyright 2021 Ross Wightman | |
""" | |
from functools import partial | |
from typing import List | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD | |
from .efficientnet_blocks import SqueezeExcite | |
from .efficientnet_builder import EfficientNetBuilder, decode_arch_def, efficientnet_init_weights,\ | |
round_channels, resolve_bn_args, resolve_act_layer, BN_EPS_TF_DEFAULT | |
from .features import FeatureInfo, FeatureHooks | |
from .helpers import build_model_with_cfg, default_cfg_for_features | |
from .layers import SelectAdaptivePool2d, Linear, create_conv2d, get_act_fn, hard_sigmoid | |
from .registry import register_model | |
__all__ = ['MobileNetV3', 'MobileNetV3Features'] | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (1, 1), | |
'crop_pct': 0.875, 'interpolation': 'bilinear', | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'conv_stem', 'classifier': 'classifier', | |
**kwargs | |
} | |
default_cfgs = { | |
'mobilenetv3_large_075': _cfg(url=''), | |
'mobilenetv3_large_100': _cfg( | |
interpolation='bicubic', | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth'), | |
'mobilenetv3_large_100_miil': _cfg( | |
interpolation='bilinear', mean=(0, 0, 0), std=(1, 1, 1), | |
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/mobilenetv3_large_100_1k_miil_78_0.pth'), | |
'mobilenetv3_large_100_miil_in21k': _cfg( | |
interpolation='bilinear', mean=(0, 0, 0), std=(1, 1, 1), | |
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/mobilenetv3_large_100_in21k_miil.pth', num_classes=11221), | |
'mobilenetv3_small_075': _cfg(url=''), | |
'mobilenetv3_small_100': _cfg(url=''), | |
'mobilenetv3_rw': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth', | |
interpolation='bicubic'), | |
'tf_mobilenetv3_large_075': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth', | |
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), | |
'tf_mobilenetv3_large_100': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth', | |
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), | |
'tf_mobilenetv3_large_minimal_100': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth', | |
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), | |
'tf_mobilenetv3_small_075': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth', | |
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), | |
'tf_mobilenetv3_small_100': _cfg( | |
url= 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth', | |
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), | |
'tf_mobilenetv3_small_minimal_100': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth', | |
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), | |
'fbnetv3_b': _cfg(), | |
'fbnetv3_d': _cfg(), | |
'fbnetv3_g': _cfg(), | |
} | |
class MobileNetV3(nn.Module): | |
""" MobiletNet-V3 | |
Based on my EfficientNet implementation and building blocks, this model utilizes the MobileNet-v3 specific | |
'efficient head', where global pooling is done before the head convolution without a final batch-norm | |
layer before the classifier. | |
Paper: https://arxiv.org/abs/1905.02244 | |
""" | |
def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=16, num_features=1280, head_bias=True, | |
pad_type='', act_layer=None, norm_layer=None, se_layer=None, se_from_exp=True, | |
round_chs_fn=round_channels, drop_rate=0., drop_path_rate=0., global_pool='avg'): | |
super(MobileNetV3, self).__init__() | |
act_layer = act_layer or nn.ReLU | |
norm_layer = norm_layer or nn.BatchNorm2d | |
se_layer = se_layer or SqueezeExcite | |
self.num_classes = num_classes | |
self.num_features = num_features | |
self.drop_rate = drop_rate | |
# Stem | |
stem_size = round_chs_fn(stem_size) | |
self.conv_stem = create_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type) | |
self.bn1 = norm_layer(stem_size) | |
self.act1 = act_layer(inplace=True) | |
# Middle stages (IR/ER/DS Blocks) | |
builder = EfficientNetBuilder( | |
output_stride=32, pad_type=pad_type, round_chs_fn=round_chs_fn, se_from_exp=se_from_exp, | |
act_layer=act_layer, norm_layer=norm_layer, se_layer=se_layer, drop_path_rate=drop_path_rate) | |
self.blocks = nn.Sequential(*builder(stem_size, block_args)) | |
self.feature_info = builder.features | |
head_chs = builder.in_chs | |
# Head + Pooling | |
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) | |
num_pooled_chs = head_chs * self.global_pool.feat_mult() | |
self.conv_head = create_conv2d(num_pooled_chs, self.num_features, 1, padding=pad_type, bias=head_bias) | |
self.act2 = act_layer(inplace=True) | |
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled | |
self.classifier = Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
efficientnet_init_weights(self) | |
def as_sequential(self): | |
layers = [self.conv_stem, self.bn1, self.act1] | |
layers.extend(self.blocks) | |
layers.extend([self.global_pool, self.conv_head, self.act2]) | |
layers.extend([nn.Flatten(), nn.Dropout(self.drop_rate), self.classifier]) | |
return nn.Sequential(*layers) | |
def get_classifier(self): | |
return self.classifier | |
def reset_classifier(self, num_classes, global_pool='avg'): | |
self.num_classes = num_classes | |
# cannot meaningfully change pooling of efficient head after creation | |
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) | |
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled | |
self.classifier = Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
def forward_features(self, x): | |
x = self.conv_stem(x) | |
x = self.bn1(x) | |
x = self.act1(x) | |
x = self.blocks(x) | |
x = self.global_pool(x) | |
x = self.conv_head(x) | |
x = self.act2(x) | |
return x | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.flatten(x) | |
if self.drop_rate > 0.: | |
x = F.dropout(x, p=self.drop_rate, training=self.training) | |
return self.classifier(x) | |
class MobileNetV3Features(nn.Module): | |
""" MobileNetV3 Feature Extractor | |
A work-in-progress feature extraction module for MobileNet-V3 to use as a backbone for segmentation | |
and object detection models. | |
""" | |
def __init__(self, block_args, out_indices=(0, 1, 2, 3, 4), feature_location='bottleneck', in_chans=3, | |
stem_size=16, output_stride=32, pad_type='', round_chs_fn=round_channels, se_from_exp=True, | |
act_layer=None, norm_layer=None, se_layer=None, drop_rate=0., drop_path_rate=0.): | |
super(MobileNetV3Features, self).__init__() | |
act_layer = act_layer or nn.ReLU | |
norm_layer = norm_layer or nn.BatchNorm2d | |
se_layer = se_layer or SqueezeExcite | |
self.drop_rate = drop_rate | |
# Stem | |
stem_size = round_chs_fn(stem_size) | |
self.conv_stem = create_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type) | |
self.bn1 = norm_layer(stem_size) | |
self.act1 = act_layer(inplace=True) | |
# Middle stages (IR/ER/DS Blocks) | |
builder = EfficientNetBuilder( | |
output_stride=output_stride, pad_type=pad_type, round_chs_fn=round_chs_fn, se_from_exp=se_from_exp, | |
act_layer=act_layer, norm_layer=norm_layer, se_layer=se_layer, | |
drop_path_rate=drop_path_rate, feature_location=feature_location) | |
self.blocks = nn.Sequential(*builder(stem_size, block_args)) | |
self.feature_info = FeatureInfo(builder.features, out_indices) | |
self._stage_out_idx = {v['stage']: i for i, v in enumerate(self.feature_info) if i in out_indices} | |
efficientnet_init_weights(self) | |
# Register feature extraction hooks with FeatureHooks helper | |
self.feature_hooks = None | |
if feature_location != 'bottleneck': | |
hooks = self.feature_info.get_dicts(keys=('module', 'hook_type')) | |
self.feature_hooks = FeatureHooks(hooks, self.named_modules()) | |
def forward(self, x) -> List[torch.Tensor]: | |
x = self.conv_stem(x) | |
x = self.bn1(x) | |
x = self.act1(x) | |
if self.feature_hooks is None: | |
features = [] | |
if 0 in self._stage_out_idx: | |
features.append(x) # add stem out | |
for i, b in enumerate(self.blocks): | |
x = b(x) | |
if i + 1 in self._stage_out_idx: | |
features.append(x) | |
return features | |
else: | |
self.blocks(x) | |
out = self.feature_hooks.get_output(x.device) | |
return list(out.values()) | |
def _create_mnv3(variant, pretrained=False, **kwargs): | |
features_only = False | |
model_cls = MobileNetV3 | |
kwargs_filter = None | |
if kwargs.pop('features_only', False): | |
features_only = True | |
kwargs_filter = ('num_classes', 'num_features', 'head_conv', 'head_bias', 'global_pool') | |
model_cls = MobileNetV3Features | |
model = build_model_with_cfg( | |
model_cls, variant, pretrained, | |
default_cfg=default_cfgs[variant], | |
pretrained_strict=not features_only, | |
kwargs_filter=kwargs_filter, | |
**kwargs) | |
if features_only: | |
model.default_cfg = default_cfg_for_features(model.default_cfg) | |
return model | |
def _gen_mobilenet_v3_rw(variant, channel_multiplier=1.0, pretrained=False, **kwargs): | |
"""Creates a MobileNet-V3 model. | |
Ref impl: ? | |
Paper: https://arxiv.org/abs/1905.02244 | |
Args: | |
channel_multiplier: multiplier to number of channels per layer. | |
""" | |
arch_def = [ | |
# stage 0, 112x112 in | |
['ds_r1_k3_s1_e1_c16_nre_noskip'], # relu | |
# stage 1, 112x112 in | |
['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], # relu | |
# stage 2, 56x56 in | |
['ir_r3_k5_s2_e3_c40_se0.25_nre'], # relu | |
# stage 3, 28x28 in | |
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], # hard-swish | |
# stage 4, 14x14in | |
['ir_r2_k3_s1_e6_c112_se0.25'], # hard-swish | |
# stage 5, 14x14in | |
['ir_r3_k5_s2_e6_c160_se0.25'], # hard-swish | |
# stage 6, 7x7 in | |
['cn_r1_k1_s1_c960'], # hard-swish | |
] | |
model_kwargs = dict( | |
block_args=decode_arch_def(arch_def), | |
head_bias=False, | |
round_chs_fn=partial(round_channels, multiplier=channel_multiplier), | |
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), | |
act_layer=resolve_act_layer(kwargs, 'hard_swish'), | |
se_layer=partial(SqueezeExcite, gate_layer='hard_sigmoid'), | |
**kwargs, | |
) | |
model = _create_mnv3(variant, pretrained, **model_kwargs) | |
return model | |
def _gen_mobilenet_v3(variant, channel_multiplier=1.0, pretrained=False, **kwargs): | |
"""Creates a MobileNet-V3 model. | |
Ref impl: ? | |
Paper: https://arxiv.org/abs/1905.02244 | |
Args: | |
channel_multiplier: multiplier to number of channels per layer. | |
""" | |
if 'small' in variant: | |
num_features = 1024 | |
if 'minimal' in variant: | |
act_layer = resolve_act_layer(kwargs, 'relu') | |
arch_def = [ | |
# stage 0, 112x112 in | |
['ds_r1_k3_s2_e1_c16'], | |
# stage 1, 56x56 in | |
['ir_r1_k3_s2_e4.5_c24', 'ir_r1_k3_s1_e3.67_c24'], | |
# stage 2, 28x28 in | |
['ir_r1_k3_s2_e4_c40', 'ir_r2_k3_s1_e6_c40'], | |
# stage 3, 14x14 in | |
['ir_r2_k3_s1_e3_c48'], | |
# stage 4, 14x14in | |
['ir_r3_k3_s2_e6_c96'], | |
# stage 6, 7x7 in | |
['cn_r1_k1_s1_c576'], | |
] | |
else: | |
act_layer = resolve_act_layer(kwargs, 'hard_swish') | |
arch_def = [ | |
# stage 0, 112x112 in | |
['ds_r1_k3_s2_e1_c16_se0.25_nre'], # relu | |
# stage 1, 56x56 in | |
['ir_r1_k3_s2_e4.5_c24_nre', 'ir_r1_k3_s1_e3.67_c24_nre'], # relu | |
# stage 2, 28x28 in | |
['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r2_k5_s1_e6_c40_se0.25'], # hard-swish | |
# stage 3, 14x14 in | |
['ir_r2_k5_s1_e3_c48_se0.25'], # hard-swish | |
# stage 4, 14x14in | |
['ir_r3_k5_s2_e6_c96_se0.25'], # hard-swish | |
# stage 6, 7x7 in | |
['cn_r1_k1_s1_c576'], # hard-swish | |
] | |
else: | |
num_features = 1280 | |
if 'minimal' in variant: | |
act_layer = resolve_act_layer(kwargs, 'relu') | |
arch_def = [ | |
# stage 0, 112x112 in | |
['ds_r1_k3_s1_e1_c16'], | |
# stage 1, 112x112 in | |
['ir_r1_k3_s2_e4_c24', 'ir_r1_k3_s1_e3_c24'], | |
# stage 2, 56x56 in | |
['ir_r3_k3_s2_e3_c40'], | |
# stage 3, 28x28 in | |
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], | |
# stage 4, 14x14in | |
['ir_r2_k3_s1_e6_c112'], | |
# stage 5, 14x14in | |
['ir_r3_k3_s2_e6_c160'], | |
# stage 6, 7x7 in | |
['cn_r1_k1_s1_c960'], | |
] | |
else: | |
act_layer = resolve_act_layer(kwargs, 'hard_swish') | |
arch_def = [ | |
# stage 0, 112x112 in | |
['ds_r1_k3_s1_e1_c16_nre'], # relu | |
# stage 1, 112x112 in | |
['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], # relu | |
# stage 2, 56x56 in | |
['ir_r3_k5_s2_e3_c40_se0.25_nre'], # relu | |
# stage 3, 28x28 in | |
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], # hard-swish | |
# stage 4, 14x14in | |
['ir_r2_k3_s1_e6_c112_se0.25'], # hard-swish | |
# stage 5, 14x14in | |
['ir_r3_k5_s2_e6_c160_se0.25'], # hard-swish | |
# stage 6, 7x7 in | |
['cn_r1_k1_s1_c960'], # hard-swish | |
] | |
se_layer = partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU, rd_round_fn=round_channels) | |
model_kwargs = dict( | |
block_args=decode_arch_def(arch_def), | |
num_features=num_features, | |
stem_size=16, | |
round_chs_fn=partial(round_channels, multiplier=channel_multiplier), | |
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), | |
act_layer=act_layer, | |
se_layer=se_layer, | |
**kwargs, | |
) | |
model = _create_mnv3(variant, pretrained, **model_kwargs) | |
return model | |
def _gen_fbnetv3(variant, channel_multiplier=1.0, pretrained=False, **kwargs): | |
""" FBNetV3 | |
Paper: `FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining` | |
- https://arxiv.org/abs/2006.02049 | |
FIXME untested, this is a preliminary impl of some FBNet-V3 variants. | |
""" | |
vl = variant.split('_')[-1] | |
if vl in ('a', 'b'): | |
stem_size = 16 | |
arch_def = [ | |
['ds_r2_k3_s1_e1_c16'], | |
['ir_r1_k5_s2_e4_c24', 'ir_r3_k5_s1_e2_c24'], | |
['ir_r1_k5_s2_e5_c40_se0.25', 'ir_r4_k5_s1_e3_c40_se0.25'], | |
['ir_r1_k5_s2_e5_c72', 'ir_r4_k3_s1_e3_c72'], | |
['ir_r1_k3_s1_e5_c120_se0.25', 'ir_r5_k5_s1_e3_c120_se0.25'], | |
['ir_r1_k3_s2_e6_c184_se0.25', 'ir_r5_k5_s1_e4_c184_se0.25', 'ir_r1_k5_s1_e6_c224_se0.25'], | |
['cn_r1_k1_s1_c1344'], | |
] | |
elif vl == 'd': | |
stem_size = 24 | |
arch_def = [ | |
['ds_r2_k3_s1_e1_c16'], | |
['ir_r1_k3_s2_e5_c24', 'ir_r5_k3_s1_e2_c24'], | |
['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r4_k3_s1_e3_c40_se0.25'], | |
['ir_r1_k3_s2_e5_c72', 'ir_r4_k3_s1_e3_c72'], | |
['ir_r1_k3_s1_e5_c128_se0.25', 'ir_r6_k5_s1_e3_c128_se0.25'], | |
['ir_r1_k3_s2_e6_c208_se0.25', 'ir_r5_k5_s1_e5_c208_se0.25', 'ir_r1_k5_s1_e6_c240_se0.25'], | |
['cn_r1_k1_s1_c1440'], | |
] | |
elif vl == 'g': | |
stem_size = 32 | |
arch_def = [ | |
['ds_r3_k3_s1_e1_c24'], | |
['ir_r1_k5_s2_e4_c40', 'ir_r4_k5_s1_e2_c40'], | |
['ir_r1_k5_s2_e4_c56_se0.25', 'ir_r4_k5_s1_e3_c56_se0.25'], | |
['ir_r1_k5_s2_e5_c104', 'ir_r4_k3_s1_e3_c104'], | |
['ir_r1_k3_s1_e5_c160_se0.25', 'ir_r8_k5_s1_e3_c160_se0.25'], | |
['ir_r1_k3_s2_e6_c264_se0.25', 'ir_r6_k5_s1_e5_c264_se0.25', 'ir_r2_k5_s1_e6_c288_se0.25'], | |
['cn_r1_k1_s1_c1728'], | |
] | |
else: | |
raise NotImplemented | |
round_chs_fn = partial(round_channels, multiplier=channel_multiplier, round_limit=0.95) | |
se_layer = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=round_chs_fn) | |
act_layer = resolve_act_layer(kwargs, 'hard_swish') | |
model_kwargs = dict( | |
block_args=decode_arch_def(arch_def), | |
num_features=1984, | |
head_bias=False, | |
stem_size=stem_size, | |
round_chs_fn=round_chs_fn, | |
se_from_exp=False, | |
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), | |
act_layer=act_layer, | |
se_layer=se_layer, | |
**kwargs, | |
) | |
model = _create_mnv3(variant, pretrained, **model_kwargs) | |
return model | |
def mobilenetv3_large_075(pretrained=False, **kwargs): | |
""" MobileNet V3 """ | |
model = _gen_mobilenet_v3('mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs) | |
return model | |
def mobilenetv3_large_100(pretrained=False, **kwargs): | |
""" MobileNet V3 """ | |
model = _gen_mobilenet_v3('mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def mobilenetv3_large_100_miil(pretrained=False, **kwargs): | |
""" MobileNet V3 | |
Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K | |
""" | |
model = _gen_mobilenet_v3('mobilenetv3_large_100_miil', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def mobilenetv3_large_100_miil_in21k(pretrained=False, **kwargs): | |
""" MobileNet V3, 21k pretraining | |
Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K | |
""" | |
model = _gen_mobilenet_v3('mobilenetv3_large_100_miil_in21k', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def mobilenetv3_small_075(pretrained=False, **kwargs): | |
""" MobileNet V3 """ | |
model = _gen_mobilenet_v3('mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs) | |
return model | |
def mobilenetv3_small_100(pretrained=False, **kwargs): | |
""" MobileNet V3 """ | |
model = _gen_mobilenet_v3('mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def mobilenetv3_rw(pretrained=False, **kwargs): | |
""" MobileNet V3 """ | |
if pretrained: | |
# pretrained model trained with non-default BN epsilon | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
model = _gen_mobilenet_v3_rw('mobilenetv3_rw', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def tf_mobilenetv3_large_075(pretrained=False, **kwargs): | |
""" MobileNet V3 """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_mobilenet_v3('tf_mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs) | |
return model | |
def tf_mobilenetv3_large_100(pretrained=False, **kwargs): | |
""" MobileNet V3 """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_mobilenet_v3('tf_mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def tf_mobilenetv3_large_minimal_100(pretrained=False, **kwargs): | |
""" MobileNet V3 """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_mobilenet_v3('tf_mobilenetv3_large_minimal_100', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def tf_mobilenetv3_small_075(pretrained=False, **kwargs): | |
""" MobileNet V3 """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_mobilenet_v3('tf_mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs) | |
return model | |
def tf_mobilenetv3_small_100(pretrained=False, **kwargs): | |
""" MobileNet V3 """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_mobilenet_v3('tf_mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def tf_mobilenetv3_small_minimal_100(pretrained=False, **kwargs): | |
""" MobileNet V3 """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_mobilenet_v3('tf_mobilenetv3_small_minimal_100', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def fbnetv3_b(pretrained=False, **kwargs): | |
""" FBNetV3-B """ | |
model = _gen_fbnetv3('fbnetv3_b', pretrained=pretrained, **kwargs) | |
return model | |
def fbnetv3_d(pretrained=False, **kwargs): | |
""" FBNetV3-D """ | |
model = _gen_fbnetv3('fbnetv3_d', pretrained=pretrained, **kwargs) | |
return model | |
def fbnetv3_g(pretrained=False, **kwargs): | |
""" FBNetV3-G """ | |
model = _gen_fbnetv3('fbnetv3_g', pretrained=pretrained, **kwargs) | |
return model | |