Spaces:
Runtime error
Runtime error
""" Res2Net and Res2NeXt | |
Adapted from Official Pytorch impl at: https://github.com/gasvn/Res2Net/ | |
Paper: `Res2Net: A New Multi-scale Backbone Architecture` - https://arxiv.org/abs/1904.01169 | |
""" | |
import math | |
import torch | |
import torch.nn as nn | |
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .helpers import build_model_with_cfg | |
from .registry import register_model | |
from .resnet import ResNet | |
__all__ = [] | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), | |
'crop_pct': 0.875, 'interpolation': 'bilinear', | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'conv1', 'classifier': 'fc', | |
**kwargs | |
} | |
default_cfgs = { | |
'res2net50_26w_4s': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_4s-06e79181.pth'), | |
'res2net50_48w_2s': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_48w_2s-afed724a.pth'), | |
'res2net50_14w_8s': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_14w_8s-6527dddc.pth'), | |
'res2net50_26w_6s': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_6s-19041792.pth'), | |
'res2net50_26w_8s': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_8s-2c7c9f12.pth'), | |
'res2net101_26w_4s': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net101_26w_4s-02a759a1.pth'), | |
'res2next50': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2next50_4s-6ef7e7bf.pth'), | |
} | |
class Bottle2neck(nn.Module): | |
""" Res2Net/Res2NeXT Bottleneck | |
Adapted from https://github.com/gasvn/Res2Net/blob/master/res2net.py | |
""" | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None, | |
cardinality=1, base_width=26, scale=4, dilation=1, first_dilation=None, | |
act_layer=nn.ReLU, norm_layer=None, attn_layer=None, **_): | |
super(Bottle2neck, self).__init__() | |
self.scale = scale | |
self.is_first = stride > 1 or downsample is not None | |
self.num_scales = max(1, scale - 1) | |
width = int(math.floor(planes * (base_width / 64.0))) * cardinality | |
self.width = width | |
outplanes = planes * self.expansion | |
first_dilation = first_dilation or dilation | |
self.conv1 = nn.Conv2d(inplanes, width * scale, kernel_size=1, bias=False) | |
self.bn1 = norm_layer(width * scale) | |
convs = [] | |
bns = [] | |
for i in range(self.num_scales): | |
convs.append(nn.Conv2d( | |
width, width, kernel_size=3, stride=stride, padding=first_dilation, | |
dilation=first_dilation, groups=cardinality, bias=False)) | |
bns.append(norm_layer(width)) | |
self.convs = nn.ModuleList(convs) | |
self.bns = nn.ModuleList(bns) | |
if self.is_first: | |
# FIXME this should probably have count_include_pad=False, but hurts original weights | |
self.pool = nn.AvgPool2d(kernel_size=3, stride=stride, padding=1) | |
else: | |
self.pool = None | |
self.conv3 = nn.Conv2d(width * scale, outplanes, kernel_size=1, bias=False) | |
self.bn3 = norm_layer(outplanes) | |
self.se = attn_layer(outplanes) if attn_layer is not None else None | |
self.relu = act_layer(inplace=True) | |
self.downsample = downsample | |
def zero_init_last_bn(self): | |
nn.init.zeros_(self.bn3.weight) | |
def forward(self, x): | |
shortcut = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
spx = torch.split(out, self.width, 1) | |
spo = [] | |
sp = spx[0] # redundant, for torchscript | |
for i, (conv, bn) in enumerate(zip(self.convs, self.bns)): | |
if i == 0 or self.is_first: | |
sp = spx[i] | |
else: | |
sp = sp + spx[i] | |
sp = conv(sp) | |
sp = bn(sp) | |
sp = self.relu(sp) | |
spo.append(sp) | |
if self.scale > 1: | |
if self.pool is not None: | |
# self.is_first == True, None check for torchscript | |
spo.append(self.pool(spx[-1])) | |
else: | |
spo.append(spx[-1]) | |
out = torch.cat(spo, 1) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.se is not None: | |
out = self.se(out) | |
if self.downsample is not None: | |
shortcut = self.downsample(x) | |
out += shortcut | |
out = self.relu(out) | |
return out | |
def _create_res2net(variant, pretrained=False, **kwargs): | |
return build_model_with_cfg( | |
ResNet, variant, pretrained, | |
default_cfg=default_cfgs[variant], | |
**kwargs) | |
def res2net50_26w_4s(pretrained=False, **kwargs): | |
"""Constructs a Res2Net-50 26w4s model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model_args = dict( | |
block=Bottle2neck, layers=[3, 4, 6, 3], base_width=26, block_args=dict(scale=4), **kwargs) | |
return _create_res2net('res2net50_26w_4s', pretrained, **model_args) | |
def res2net101_26w_4s(pretrained=False, **kwargs): | |
"""Constructs a Res2Net-101 26w4s model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model_args = dict( | |
block=Bottle2neck, layers=[3, 4, 23, 3], base_width=26, block_args=dict(scale=4), **kwargs) | |
return _create_res2net('res2net101_26w_4s', pretrained, **model_args) | |
def res2net50_26w_6s(pretrained=False, **kwargs): | |
"""Constructs a Res2Net-50 26w6s model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model_args = dict( | |
block=Bottle2neck, layers=[3, 4, 6, 3], base_width=26, block_args=dict(scale=6), **kwargs) | |
return _create_res2net('res2net50_26w_6s', pretrained, **model_args) | |
def res2net50_26w_8s(pretrained=False, **kwargs): | |
"""Constructs a Res2Net-50 26w8s model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model_args = dict( | |
block=Bottle2neck, layers=[3, 4, 6, 3], base_width=26, block_args=dict(scale=8), **kwargs) | |
return _create_res2net('res2net50_26w_8s', pretrained, **model_args) | |
def res2net50_48w_2s(pretrained=False, **kwargs): | |
"""Constructs a Res2Net-50 48w2s model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model_args = dict( | |
block=Bottle2neck, layers=[3, 4, 6, 3], base_width=48, block_args=dict(scale=2), **kwargs) | |
return _create_res2net('res2net50_48w_2s', pretrained, **model_args) | |
def res2net50_14w_8s(pretrained=False, **kwargs): | |
"""Constructs a Res2Net-50 14w8s model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model_args = dict( | |
block=Bottle2neck, layers=[3, 4, 6, 3], base_width=14, block_args=dict(scale=8), **kwargs) | |
return _create_res2net('res2net50_14w_8s', pretrained, **model_args) | |
def res2next50(pretrained=False, **kwargs): | |
"""Construct Res2NeXt-50 4s | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model_args = dict( | |
block=Bottle2neck, layers=[3, 4, 6, 3], base_width=4, cardinality=8, block_args=dict(scale=4), **kwargs) | |
return _create_res2net('res2next50', pretrained, **model_args) | |