Spaces:
Runtime error
Runtime error
""" | |
TResNet: High Performance GPU-Dedicated Architecture | |
https://arxiv.org/pdf/2003.13630.pdf | |
Original model: https://github.com/mrT23/TResNet | |
""" | |
from collections import OrderedDict | |
import torch | |
import torch.nn as nn | |
from .helpers import build_model_with_cfg | |
from .layers import SpaceToDepthModule, BlurPool2d, InplaceAbn, ClassifierHead, SEModule | |
from .registry import register_model | |
__all__ = ['tresnet_m', 'tresnet_l', 'tresnet_xl'] | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), | |
'crop_pct': 0.875, 'interpolation': 'bilinear', | |
'mean': (0, 0, 0), 'std': (1, 1, 1), | |
'first_conv': 'body.conv1.0', 'classifier': 'head.fc', | |
**kwargs | |
} | |
default_cfgs = { | |
'tresnet_m': _cfg( | |
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/tresnet_m_1k_miil_83_1.pth'), | |
'tresnet_m_miil_in21k': _cfg( | |
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/tresnet_m_miil_in21k.pth', num_classes=11221), | |
'tresnet_l': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_l_81_5-235b486c.pth'), | |
'tresnet_xl': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_xl_82_0-a2d51b00.pth'), | |
'tresnet_m_448': _cfg( | |
input_size=(3, 448, 448), pool_size=(14, 14), | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_m_448-bc359d10.pth'), | |
'tresnet_l_448': _cfg( | |
input_size=(3, 448, 448), pool_size=(14, 14), | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_l_448-940d0cd1.pth'), | |
'tresnet_xl_448': _cfg( | |
input_size=(3, 448, 448), pool_size=(14, 14), | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_xl_448-8c1815de.pth') | |
} | |
def IABN2Float(module: nn.Module) -> nn.Module: | |
"""If `module` is IABN don't use half precision.""" | |
if isinstance(module, InplaceAbn): | |
module.float() | |
for child in module.children(): | |
IABN2Float(child) | |
return module | |
def conv2d_iabn(ni, nf, stride, kernel_size=3, groups=1, act_layer="leaky_relu", act_param=1e-2): | |
return nn.Sequential( | |
nn.Conv2d( | |
ni, nf, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, groups=groups, bias=False), | |
InplaceAbn(nf, act_layer=act_layer, act_param=act_param) | |
) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True, aa_layer=None): | |
super(BasicBlock, self).__init__() | |
if stride == 1: | |
self.conv1 = conv2d_iabn(inplanes, planes, stride=1, act_param=1e-3) | |
else: | |
if aa_layer is None: | |
self.conv1 = conv2d_iabn(inplanes, planes, stride=2, act_param=1e-3) | |
else: | |
self.conv1 = nn.Sequential( | |
conv2d_iabn(inplanes, planes, stride=1, act_param=1e-3), | |
aa_layer(channels=planes, filt_size=3, stride=2)) | |
self.conv2 = conv2d_iabn(planes, planes, stride=1, act_layer="identity") | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
rd_chs = max(planes * self.expansion // 4, 64) | |
self.se = SEModule(planes * self.expansion, rd_channels=rd_chs) if use_se else None | |
def forward(self, x): | |
if self.downsample is not None: | |
shortcut = self.downsample(x) | |
else: | |
shortcut = x | |
out = self.conv1(x) | |
out = self.conv2(out) | |
if self.se is not None: | |
out = self.se(out) | |
out += shortcut | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True, | |
act_layer="leaky_relu", aa_layer=None): | |
super(Bottleneck, self).__init__() | |
self.conv1 = conv2d_iabn( | |
inplanes, planes, kernel_size=1, stride=1, act_layer=act_layer, act_param=1e-3) | |
if stride == 1: | |
self.conv2 = conv2d_iabn( | |
planes, planes, kernel_size=3, stride=1, act_layer=act_layer, act_param=1e-3) | |
else: | |
if aa_layer is None: | |
self.conv2 = conv2d_iabn( | |
planes, planes, kernel_size=3, stride=2, act_layer=act_layer, act_param=1e-3) | |
else: | |
self.conv2 = nn.Sequential( | |
conv2d_iabn(planes, planes, kernel_size=3, stride=1, act_layer=act_layer, act_param=1e-3), | |
aa_layer(channels=planes, filt_size=3, stride=2)) | |
reduction_chs = max(planes * self.expansion // 8, 64) | |
self.se = SEModule(planes, rd_channels=reduction_chs) if use_se else None | |
self.conv3 = conv2d_iabn( | |
planes, planes * self.expansion, kernel_size=1, stride=1, act_layer="identity") | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
if self.downsample is not None: | |
shortcut = self.downsample(x) | |
else: | |
shortcut = x | |
out = self.conv1(x) | |
out = self.conv2(out) | |
if self.se is not None: | |
out = self.se(out) | |
out = self.conv3(out) | |
out = out + shortcut # no inplace | |
out = self.relu(out) | |
return out | |
class TResNet(nn.Module): | |
def __init__(self, layers, in_chans=3, num_classes=1000, width_factor=1.0, global_pool='fast', drop_rate=0.): | |
self.num_classes = num_classes | |
self.drop_rate = drop_rate | |
super(TResNet, self).__init__() | |
aa_layer = BlurPool2d | |
# TResnet stages | |
self.inplanes = int(64 * width_factor) | |
self.planes = int(64 * width_factor) | |
conv1 = conv2d_iabn(in_chans * 16, self.planes, stride=1, kernel_size=3) | |
layer1 = self._make_layer( | |
BasicBlock, self.planes, layers[0], stride=1, use_se=True, aa_layer=aa_layer) # 56x56 | |
layer2 = self._make_layer( | |
BasicBlock, self.planes * 2, layers[1], stride=2, use_se=True, aa_layer=aa_layer) # 28x28 | |
layer3 = self._make_layer( | |
Bottleneck, self.planes * 4, layers[2], stride=2, use_se=True, aa_layer=aa_layer) # 14x14 | |
layer4 = self._make_layer( | |
Bottleneck, self.planes * 8, layers[3], stride=2, use_se=False, aa_layer=aa_layer) # 7x7 | |
# body | |
self.body = nn.Sequential(OrderedDict([ | |
('SpaceToDepth', SpaceToDepthModule()), | |
('conv1', conv1), | |
('layer1', layer1), | |
('layer2', layer2), | |
('layer3', layer3), | |
('layer4', layer4)])) | |
self.feature_info = [ | |
dict(num_chs=self.planes, reduction=2, module=''), # Not with S2D? | |
dict(num_chs=self.planes, reduction=4, module='body.layer1'), | |
dict(num_chs=self.planes * 2, reduction=8, module='body.layer2'), | |
dict(num_chs=self.planes * 4 * Bottleneck.expansion, reduction=16, module='body.layer3'), | |
dict(num_chs=self.planes * 8 * Bottleneck.expansion, reduction=32, module='body.layer4'), | |
] | |
# head | |
self.num_features = (self.planes * 8) * Bottleneck.expansion | |
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) | |
# model initilization | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu') | |
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, InplaceAbn): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
# residual connections special initialization | |
for m in self.modules(): | |
if isinstance(m, BasicBlock): | |
m.conv2[1].weight = nn.Parameter(torch.zeros_like(m.conv2[1].weight)) # BN to zero | |
if isinstance(m, Bottleneck): | |
m.conv3[1].weight = nn.Parameter(torch.zeros_like(m.conv3[1].weight)) # BN to zero | |
if isinstance(m, nn.Linear): | |
m.weight.data.normal_(0, 0.01) | |
def _make_layer(self, block, planes, blocks, stride=1, use_se=True, aa_layer=None): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
layers = [] | |
if stride == 2: | |
# avg pooling before 1x1 conv | |
layers.append(nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True, count_include_pad=False)) | |
layers += [conv2d_iabn( | |
self.inplanes, planes * block.expansion, kernel_size=1, stride=1, act_layer="identity")] | |
downsample = nn.Sequential(*layers) | |
layers = [] | |
layers.append(block( | |
self.inplanes, planes, stride, downsample, use_se=use_se, aa_layer=aa_layer)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append( | |
block(self.inplanes, planes, use_se=use_se, aa_layer=aa_layer)) | |
return nn.Sequential(*layers) | |
def get_classifier(self): | |
return self.head.fc | |
def reset_classifier(self, num_classes, global_pool='fast'): | |
self.head = ClassifierHead( | |
self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) | |
def forward_features(self, x): | |
return self.body(x) | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.head(x) | |
return x | |
def _create_tresnet(variant, pretrained=False, **kwargs): | |
return build_model_with_cfg( | |
TResNet, variant, pretrained, | |
default_cfg=default_cfgs[variant], | |
feature_cfg=dict(out_indices=(1, 2, 3, 4), flatten_sequential=True), | |
**kwargs) | |
def tresnet_m(pretrained=False, **kwargs): | |
model_kwargs = dict(layers=[3, 4, 11, 3], **kwargs) | |
return _create_tresnet('tresnet_m', pretrained=pretrained, **model_kwargs) | |
def tresnet_m_miil_in21k(pretrained=False, **kwargs): | |
model_kwargs = dict(layers=[3, 4, 11, 3], **kwargs) | |
return _create_tresnet('tresnet_m_miil_in21k', pretrained=pretrained, **model_kwargs) | |
def tresnet_l(pretrained=False, **kwargs): | |
model_kwargs = dict(layers=[4, 5, 18, 3], width_factor=1.2, **kwargs) | |
return _create_tresnet('tresnet_l', pretrained=pretrained, **model_kwargs) | |
def tresnet_xl(pretrained=False, **kwargs): | |
model_kwargs = dict(layers=[4, 5, 24, 3], width_factor=1.3, **kwargs) | |
return _create_tresnet('tresnet_xl', pretrained=pretrained, **model_kwargs) | |
def tresnet_m_448(pretrained=False, **kwargs): | |
model_kwargs = dict(layers=[3, 4, 11, 3], **kwargs) | |
return _create_tresnet('tresnet_m_448', pretrained=pretrained, **model_kwargs) | |
def tresnet_l_448(pretrained=False, **kwargs): | |
model_kwargs = dict(layers=[4, 5, 18, 3], width_factor=1.2, **kwargs) | |
return _create_tresnet('tresnet_l_448', pretrained=pretrained, **model_kwargs) | |
def tresnet_xl_448(pretrained=False, **kwargs): | |
model_kwargs = dict(layers=[4, 5, 24, 3], width_factor=1.3, **kwargs) | |
return _create_tresnet('tresnet_xl_448', pretrained=pretrained, **model_kwargs) | |