Spaces:
Runtime error
Runtime error
""" Model / state_dict utils | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
from .model_ema import ModelEma | |
import torch | |
import fnmatch | |
def unwrap_model(model): | |
if isinstance(model, ModelEma): | |
return unwrap_model(model.ema) | |
else: | |
return model.module if hasattr(model, 'module') else model | |
def get_state_dict(model, unwrap_fn=unwrap_model): | |
return unwrap_fn(model).state_dict() | |
def avg_sq_ch_mean(model, input, output): | |
"calculate average channel square mean of output activations" | |
return torch.mean(output.mean(axis=[0,2,3])**2).item() | |
def avg_ch_var(model, input, output): | |
"calculate average channel variance of output activations" | |
return torch.mean(output.var(axis=[0,2,3])).item()\ | |
def avg_ch_var_residual(model, input, output): | |
"calculate average channel variance of output activations" | |
return torch.mean(output.var(axis=[0,2,3])).item() | |
class ActivationStatsHook: | |
"""Iterates through each of `model`'s modules and matches modules using unix pattern | |
matching based on `hook_fn_locs` and registers `hook_fn` to the module if there is | |
a match. | |
Arguments: | |
model (nn.Module): model from which we will extract the activation stats | |
hook_fn_locs (List[str]): List of `hook_fn` locations based on Unix type string | |
matching with the name of model's modules. | |
hook_fns (List[Callable]): List of hook functions to be registered at every | |
module in `layer_names`. | |
Inspiration from https://docs.fast.ai/callback.hook.html. | |
Refer to https://gist.github.com/amaarora/6e56942fcb46e67ba203f3009b30d950 for an example | |
on how to plot Signal Propogation Plots using `ActivationStatsHook`. | |
""" | |
def __init__(self, model, hook_fn_locs, hook_fns): | |
self.model = model | |
self.hook_fn_locs = hook_fn_locs | |
self.hook_fns = hook_fns | |
if len(hook_fn_locs) != len(hook_fns): | |
raise ValueError("Please provide `hook_fns` for each `hook_fn_locs`, \ | |
their lengths are different.") | |
self.stats = dict((hook_fn.__name__, []) for hook_fn in hook_fns) | |
for hook_fn_loc, hook_fn in zip(hook_fn_locs, hook_fns): | |
self.register_hook(hook_fn_loc, hook_fn) | |
def _create_hook(self, hook_fn): | |
def append_activation_stats(module, input, output): | |
out = hook_fn(module, input, output) | |
self.stats[hook_fn.__name__].append(out) | |
return append_activation_stats | |
def register_hook(self, hook_fn_loc, hook_fn): | |
for name, module in self.model.named_modules(): | |
if not fnmatch.fnmatch(name, hook_fn_loc): | |
continue | |
module.register_forward_hook(self._create_hook(hook_fn)) | |
def extract_spp_stats(model, | |
hook_fn_locs, | |
hook_fns, | |
input_shape=[8, 3, 224, 224]): | |
"""Extract average square channel mean and variance of activations during | |
forward pass to plot Signal Propogation Plots (SPP). | |
Paper: https://arxiv.org/abs/2101.08692 | |
Example Usage: https://gist.github.com/amaarora/6e56942fcb46e67ba203f3009b30d950 | |
""" | |
x = torch.normal(0., 1., input_shape) | |
hook = ActivationStatsHook(model, hook_fn_locs=hook_fn_locs, hook_fns=hook_fns) | |
_ = model(x) | |
return hook.stats | |