|
import numpy as np |
|
import torch |
|
from densepose import add_densepose_config |
|
from densepose.vis.densepose_results import ( |
|
DensePoseResultsFineSegmentationVisualizer as Visualizer, |
|
) |
|
from densepose.vis.extractor import DensePoseResultExtractor |
|
from detectron2.config import get_cfg |
|
from detectron2.engine import DefaultPredictor |
|
|
|
|
|
class DensePosePredictor(object): |
|
def __init__(self): |
|
cfg = get_cfg() |
|
add_densepose_config(cfg) |
|
cfg.merge_from_file( |
|
"ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml" |
|
) |
|
cfg.MODEL.WEIGHTS = "ckpts/densepose/model_final_162be9.pkl" |
|
cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 |
|
self.predictor = DefaultPredictor(cfg) |
|
self.extractor = DensePoseResultExtractor() |
|
self.visualizer = Visualizer() |
|
|
|
def predict(self, image): |
|
if isinstance(image, str): |
|
image = cv2.imread(image) |
|
with torch.no_grad(): |
|
outputs = self.predictor(image)["instances"] |
|
outputs = self.extractor(outputs) |
|
return outputs |
|
|
|
def predict_iuv(self, image): |
|
outputs = self.predict(image) |
|
|
|
img_i = outputs[0][0].labels[None, ...] |
|
img_uv = outputs[0][0].uv |
|
img_uv = (img_uv - img_uv.min()) / (img_uv.max() - img_uv.min()) |
|
img_uv *= 255 |
|
img_iuv = torch.cat([img_i, img_uv], dim=0) |
|
img_iuv = img_iuv.permute(1, 2, 0) |
|
img_iuv = img_iuv.cpu().numpy() |
|
|
|
position = [int(x) for x in outputs[1][0].cpu().numpy().tolist()] |
|
x1, y1, w, h = position |
|
x2 = x1 + w |
|
y2 = y1 + h |
|
image_iuv = np.zeros(image.shape, dtype=image.dtype) |
|
image_iuv[y1:y2, x1:x2, :] = img_iuv |
|
image_iuv = image_iuv[:, :, [0, 2, 1]] |
|
|
|
return image_iuv |
|
|
|
def predict_seg(self, image): |
|
outputs = self.predict(image) |
|
|
|
image_seg = np.zeros(image.shape, dtype=image.dtype) |
|
self.visualizer.visualize(image_seg, outputs) |
|
|
|
return image_seg |
|
|
|
|
|
if __name__ == "__main__": |
|
import sys |
|
|
|
import cv2 |
|
|
|
image_path = sys.argv[1] |
|
image = cv2.imread(image_path) |
|
predictor = DensePosePredictor() |
|
image_iuv = predictor.predict_iuv(image) |
|
image_seg = predictor.predict_seg(image) |
|
cv2.imwrite(".".join(image_path.split(".")[:-1]) + "_iuv.jpg", image_iuv) |
|
cv2.imwrite(".".join(image_path.split(".")[:-1]) + "_seg.jpg", image_seg) |
|
|