merve's picture
merve HF staff
Upload 5 files
59e8091 verified
raw
history blame
3.54 kB
import gradio as gr
from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
from threading import Thread
import re
import time
from PIL import Image
import torch
import cv2
import spaces
model_id = "llava-hf/llava-interleave-qwen-7b-hf"
processor = LlavaProcessor.from_pretrained(model_id)
model = LlavaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16)
model.to("cuda")
def sample_frames(video_file, num_frames) :
video = cv2.VideoCapture(video_file)
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
interval = total_frames // num_frames
frames = []
for i in range(total_frames):
ret, frame = video.read()
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
if not ret:
continue
if i % interval == 0:
frames.append(pil_img)
video.release()
return frames
@spaces.GPU
def bot_streaming(message, history):
if message["files"]:
image = message["files"][-1]
else:
# if there's no image uploaded for this turn, look for images in the past turns
# kept inside tuples, take the last one
for hist in history:
if type(hist[0])==tuple:
image = hist[0][0]
txt = message["text"]
img = message["files"]
ext_buffer =f"'user\ntext': '{txt}', 'files': '{img}' assistantAnswer:"
if image is None:
gr.Error("You need to upload an image or video for LLaVA to work.")
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg")
image_extensions = Image.registered_extensions()
image_extensions = tuple([ex for ex, f in image_extensions.items()])
if image.endswith(video_extensions):
image = sample_frames(image, 5)
image_tokens = "<image>" * 5
prompt = f"<|im_start|>user {image_tokens}\n{message}<|im_end|><|im_start|>assistant"
elif image.endswith(image_extensions):
image = Image.open(image).convert("RGB")
prompt = f"<|im_start|>user <image>\n{message}<|im_end|><|im_start|>assistant"
inputs = processor(prompt, image, return_tensors="pt").to("cuda", torch.float16)
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=100)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
print(buffer)
generated_text_without_prompt = buffer[len(ext_buffer):]
time.sleep(0.01)
yield generated_text_without_prompt
demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA Interleave", examples=[{"text": "What is on the flower?", "files":["./bee.jpg"]},
{"text": "How to make this pastry?", "files":["./baklava.png"]},
{"text": "What type of cats are these?", "files":["./cats.mp4"]}],
description="Try [LLaVA Interleave](https://huggingface.co/docs/transformers/main/en/model_doc/llava) in this demo (more specifically, the [Qwen-1.5-7B variant](https://huggingface.co/llava-hf/llava-interleave-qwen-7b-hf)). Upload an image or a video, and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
stop_btn="Stop Generation", multimodal=True)
demo.launch(debug=True)