File size: 21,245 Bytes
ffead1e
c834941
ffead1e
 
 
 
 
 
 
515a050
adac4ab
ffead1e
a117171
ffead1e
df31906
515a050
df31906
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c834941
df31906
477fe86
 
 
 
 
 
 
 
ffead1e
477fe86
ffead1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86a3494
ffead1e
 
 
 
 
86a3494
ffead1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a258601
ee5f368
0794579
 
 
 
d193c14
 
 
 
 
 
0794579
c834941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a117171
58d4d6c
c834941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d193c14
ffead1e
adac4ab
c834941
 
 
 
 
ffead1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0353aff
c834941
0353aff
 
 
 
 
ffead1e
 
c834941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import gradio as gr
import random
import json
import torch
import wavio
from tqdm import tqdm
from huggingface_hub import snapshot_download
from models import AudioDiffusion, DDPMScheduler
from audioldm.audio.stft import TacotronSTFT
from audioldm.variational_autoencoder import AutoencoderKL
from pydub import AudioSegment
from gradio import Markdown
import spaces

import torch
#from diffusers.models.autoencoder_kl import AutoencoderKL
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from diffusers import DiffusionPipeline,AudioPipelineOutput
from transformers import CLIPTextModel, T5EncoderModel, AutoModel, T5Tokenizer, T5TokenizerFast
from typing import Union
from diffusers.utils.torch_utils import randn_tensor
from tqdm import tqdm




class Tango2Pipeline(DiffusionPipeline):

    
    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: T5EncoderModel,
        tokenizer: Union[T5Tokenizer, T5TokenizerFast],
        unet: UNet2DConditionModel,
        scheduler: DDPMScheduler
    ):
        
        super().__init__()
    
        self.register_modules(vae=vae,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        scheduler=scheduler
        )
        
    
    def _encode_prompt(self, prompt):
        device = self.text_encoder.device
        
        batch = self.tokenizer(
            prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
        )
        input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)

       
        encoder_hidden_states = self.text_encoder(
                input_ids=input_ids, attention_mask=attention_mask
            )[0]

        boolean_encoder_mask = (attention_mask == 1).to(device)
        
        return encoder_hidden_states, boolean_encoder_mask
        
    def _encode_text_classifier_free(self, prompt, num_samples_per_prompt):
        device = self.text_encoder.device
        batch = self.tokenizer(
            prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
        )
        input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)

        with torch.no_grad():
            prompt_embeds = self.text_encoder(
                input_ids=input_ids, attention_mask=attention_mask
            )[0]
                
        prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
        attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)

        # get unconditional embeddings for classifier free guidance
        uncond_tokens = [""] * len(prompt)

        max_length = prompt_embeds.shape[1]
        uncond_batch = self.tokenizer(
            uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt",
        )
        uncond_input_ids = uncond_batch.input_ids.to(device)
        uncond_attention_mask = uncond_batch.attention_mask.to(device)

        with torch.no_grad():
            negative_prompt_embeds = self.text_encoder(
                input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
            )[0]
                
        negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
        uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)

        # For classifier free guidance, we need to do two forward passes.
        # We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
        prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
        boolean_prompt_mask = (prompt_mask == 1).to(device)

        return prompt_embeds, boolean_prompt_mask
        
    def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
        shape = (batch_size, num_channels_latents, 256, 16)
        latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * inference_scheduler.init_noise_sigma
        return latents
    
    @torch.no_grad()
    def inference(self, prompt, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, 
                  disable_progress=True):
        device = self.text_encoder.device
        classifier_free_guidance = guidance_scale > 1.0
        batch_size = len(prompt) * num_samples_per_prompt

        if classifier_free_guidance:
            prompt_embeds, boolean_prompt_mask = self._encode_text_classifier_free(prompt, num_samples_per_prompt)
        else:
            prompt_embeds, boolean_prompt_mask = self._encode_text(prompt)
            prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
            boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)

        inference_scheduler.set_timesteps(num_steps, device=device)
        timesteps = inference_scheduler.timesteps

        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device)

        num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
        progress_bar = tqdm(range(num_steps), disable=disable_progress)

        for i, t in enumerate(timesteps):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
            latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)

            noise_pred = self.unet(
                latent_model_input, t, encoder_hidden_states=prompt_embeds,
                encoder_attention_mask=boolean_prompt_mask
            ).sample

            # perform guidance
            if classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            latents = inference_scheduler.step(noise_pred, t, latents).prev_sample

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
                progress_bar.update(1)

        return latents
        
    @torch.no_grad()
    def __call__(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True):
        """ Genrate audio for a single prompt string. """
        with torch.no_grad():
            latents = self.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
            mel = self.vae.decode_first_stage(latents)
            wave = self.vae.decode_to_waveform(mel)


        return AudioPipelineOutput(audios=wave)

max_64_bit_int = 2**63 - 1

# Automatic device detection
if torch.cuda.is_available():
    device_type = "cuda"
    device_selection = "cuda:0"
else:
    device_type = "cpu"
    device_selection = "cpu"

class Tango:
    def __init__(self, name="declare-lab/tango2", device=device_selection):
        
        path = snapshot_download(repo_id=name)
        
        vae_config = json.load(open("{}/vae_config.json".format(path)))
        stft_config = json.load(open("{}/stft_config.json".format(path)))
        main_config = json.load(open("{}/main_config.json".format(path)))
        
        self.vae = AutoencoderKL(**vae_config).to(device)
        self.stft = TacotronSTFT(**stft_config).to(device)
        self.model = AudioDiffusion(**main_config).to(device)
        
        vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location=device)
        stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location=device)
        main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location=device)
        
        self.vae.load_state_dict(vae_weights)
        self.stft.load_state_dict(stft_weights)
        self.model.load_state_dict(main_weights)

        print ("Successfully loaded checkpoint from:", name)
        
        self.vae.eval()
        self.stft.eval()
        self.model.eval()
        
        self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder="scheduler")
        
    def chunks(self, lst, n):
        """ Yield successive n-sized chunks from a list. """
        for i in range(0, len(lst), n):
            yield lst[i:i + n]
        
    def generate(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True):
        """ Genrate audio for a single prompt string. """
        with torch.no_grad():
            latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
            mel = self.vae.decode_first_stage(latents)
            wave = self.vae.decode_to_waveform(mel)
        return wave[0]
    
    def generate_for_batch(self, prompts, steps=200, guidance=3, samples=1, batch_size=8, disable_progress=True):
        """ Genrate audio for a list of prompt strings. """
        outputs = []
        for k in tqdm(range(0, len(prompts), batch_size)):
            batch = prompts[k: k+batch_size]
            with torch.no_grad():
                latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
                mel = self.vae.decode_first_stage(latents)
                wave = self.vae.decode_to_waveform(mel)
                outputs += [item for item in wave]
        if samples == 1:
            return outputs
        else:
            return list(self.chunks(outputs, samples))

# Initialize TANGO

tango = Tango(device="cpu")
tango.vae.to(device_type)
tango.stft.to(device_type)
tango.model.to(device_type)

pipe = Tango2Pipeline(vae=tango.vae,
                      text_encoder=tango.model.text_encoder,
                      tokenizer=tango.model.tokenizer,
                      unet=tango.model.unet,
                      scheduler=tango.scheduler
                      )


def update_seed(is_randomize_seed, seed):
    if is_randomize_seed:
        return random.randint(0, max_64_bit_int)
    return seed

def check(
    prompt,
    output_format,
    output_number,
    steps,
    guidance,
    is_randomize_seed,
    seed
):
    if prompt is None or prompt == "":
        raise gr.Error("Please provide a prompt input.")
    if not output_number in [1, 2, 3]:
        raise gr.Error("Please ask for 1, 2 or 3 output files.")

def update_output(output_format, output_number):
    return [
        gr.update(format = output_format),
        gr.update(format = output_format, visible = (2 <= output_number)),
        gr.update(format = output_format, visible = (output_number == 3))
    ]

def generate_output(output_wave, output_format, output_number, output_index):
    if (output_number < output_index):
        return gr.update(format = output_format, visible = False)

    output_wave = output_wave.audios[output_index - 1]
    output_filename = "tmp" + str(output_index) + ".wav"
    wavio.write(output_filename, output_wave, rate=16000, sampwidth=2)

    if (output_format == "mp3"):
        AudioSegment.from_wav("tmp" + str(output_index) + ".wav").export("tmp" + str(output_index) + ".mp3", format = "mp3")
        output_filename = "tmp" + str(output_index) + ".mp3"

    return gr.update(value = output_filename, format = output_format, visible = True)
    
@spaces.GPU(duration=180)
def gradio_generate(
    prompt,
    output_format,
    output_number,
    steps,
    guidance,
    is_randomize_seed,
    seed
):
    if seed is None:
        seed = random.randint(0, max_64_bit_int)

    random.seed(seed)
    torch.manual_seed(seed)

    output_wave = pipe(prompt, steps, guidance, samples = output_number) ## Using pipeline automatically uses flash attention for torch2.0 above

    #output_wave = tango.generate(prompt, steps, guidance)
    # output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav"

    return [
        generate_output(output_wave, output_format, output_number, 1),
        generate_output(output_wave, output_format, output_number, 2),
        generate_output(output_wave, output_format, output_number, 3)
    ]

# description_text = """
# <p><a href="https://huggingface.co/spaces/declare-lab/tango/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
# Generate audio using TANGO by providing a text prompt.
# <br/><br/>Limitations: TANGO is trained on the small AudioCaps dataset so it may not generate good audio \
# samples related to concepts that it has not seen in training (e.g. singing). For the same reason, TANGO \
# is not always able to finely control its generations over textual control prompts. For example, \
# the generations from TANGO for prompts Chopping tomatoes on a wooden table and Chopping potatoes \
# on a metal table are very similar. \
# <br/><br/>We are currently training another version of TANGO on larger datasets to enhance its generalization, \
# compositional and controllable generation ability.
# <br/><br/>We recommend using a guidance scale of 3. The default number of steps is set to 100. More steps generally lead to better quality of generated audios but will take longer.
# <br/><br/>
# <h1> ChatGPT-enhanced audio generation</h1>
# <br/>
# As TANGO consists of an instruction-tuned LLM, it is able to process complex sound descriptions allowing us to provide more detailed instructions to improve the generation quality.
# For example, ``A boat is moving on the sea'' vs ``The sound of the water lapping against the hull of the boat or splashing as you move through the waves''. The latter is obtained by prompting ChatGPT to explain the sound generated when a boat moves on the sea.
# Using this ChatGPT-generated description of the sound, TANGO provides superior results.
# <p/>
# """
description_text = """
<h1><center>Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization</center></h1>
<p><a href="https://huggingface.co/spaces/declare-lab/tango2/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
Generate audio using Tango2 by providing a text prompt. Tango2 was built from Tango and was trained on <a href="https://huggingface.co/datasets/declare-lab/audio-alpaca">Audio-alpaca</a>
<br/><br/> This is the demo for Tango2 for text to audio generation: <a href="https://arxiv.org/abs/2404.09956">Read our paper.</a>
<p/>
"""

# Gradio interface
with gr.Blocks() as interface:
    gr.HTML(description_text)
    with gr.Row():
        with gr.Column():
            input_text = gr.Textbox(lines=2, label="Prompt")
            output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices = ["mp3", "wav"], value = "wav")
            output_number = gr.Slider(label = "Number of generations", info = "1, 2 or 3 output files", minimum = 1, maximum = 3, value = 1, step = 1, interactive = True)
            denoising_steps = gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Steps", interactive=True)
            guidance_scale = gr.Slider(minimum=1, maximum=10, value=3, step=0.1, label="Guidance Scale", interactive=True)
            randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
            seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed")
        
            submit = gr.Button("Generate", variant = "primary")
        
        with gr.Column():
            output_audio_1 = gr.Audio(label = "Generated Audio #1/3", format = "wav", type="numpy")
            output_audio_2 = gr.Audio(label = "Generated Audio #2/3", format = "wav", type="numpy")
            output_audio_3 = gr.Audio(label = "Generated Audio #3/3", format = "wav", type="numpy")

    submit.click(fn = update_seed, inputs = [
        randomize_seed,
        seed
    ], outputs = [
        seed
    ], queue = False, show_progress = False).then(fn = check, inputs = [
        input_text,
        output_format,
        output_number,
        denoising_steps,
        guidance_scale,
        randomize_seed,
        seed
    ], outputs = [], queue = False, show_progress = False).success(fn = update_output, inputs = [
        output_format,
        output_number
    ], outputs = [
        output_audio_1,
        output_audio_2,
        output_audio_3
    ], queue = False, show_progress = False).success(fn = gradio_generate, inputs = [
        input_text,
        output_format,
        output_number,
        denoising_steps,
        guidance_scale,
        randomize_seed,
        seed
    ], outputs = [
        output_audio_1,
        output_audio_2,
        output_audio_3
    ], scroll_to_output = True)

    gr.Examples(
        fn = gradio_generate,
	    inputs = [
            input_text,
            output_format,
            output_number,
            denoising_steps,
            guidance_scale,
            randomize_seed,
            seed
        ],
	    outputs = [
            output_audio_1,
            output_audio_2,
            output_audio_3
        ],
        examples = [
                ["Quiet speech and then airplane flying away", "wav", 3, 200, 3, False, 123],
                ["A bicycle peddling on dirt and gravel followed by a man speaking then laughing", "wav", 3, 200, 3, False, 123],
                ["Ducks quack and water splashes with some animal screeching in the background", "wav", 3, 200, 3, False, 123],
                ["Describe the sound of the ocean", "wav", 3, 200, 3, False, 123],
                ["A woman and a baby are having a conversation", "wav", 3, 200, 3, False, 123],
                ["A man speaks followed by a popping noise and laughter", "wav", 3, 200, 3, False, 123],
                ["A cup is filled from a faucet", "wav", 3, 200, 3, False, 123],
                ["An audience cheering and clapping", "wav", 3, 200, 3, False, 123],
                ["Rolling thunder with lightning strikes", "wav", 3, 200, 3, False, 123],
                ["A dog barking and a cat mewing and a racing car passes by", "wav", 3, 200, 3, False, 123],
                ["Gentle water stream, birds chirping and sudden gun shot", "wav", 3, 200, 3, False, 123],
                ["A man talking followed by a goat baaing then a metal gate sliding shut as ducks quack and wind blows into a microphone.", 3, 200, 3, False, 123],
                ["A dog barking", "wav", 3, 200, 3, False, 123],
                ["A cat meowing", "wav", 3, 200, 3, False, 123],
                ["Wooden table tapping sound while water pouring", "wav", 3, 200, 3, False, 123],
                ["Applause from a crowd with distant clicking and a man speaking over a loudspeaker", "wav", 3, 200, 3, False, 123],
                ["two gunshots followed by birds flying away while chirping", "wav", 3, 200, 3, False, 123],
                ["Whistling with birds chirping", "wav", 3, 200, 3, False, 123],
                ["A person snoring", "wav", 3, 200, 3, False, 123],
                ["Motor vehicles are driving with loud engines and a person whistles", "wav", 3, 200, 3, False, 123],
                ["People cheering in a stadium while thunder and lightning strikes", "wav", 3, 200, 3, False, 123],
                ["A helicopter is in flight", "wav", 3, 200, 3, False, 123],
                ["A dog barking and a man talking and a racing car passes by", "wav", 3, 200, 3, False, 123],
            ],
        cache_examples = "lazy",
    )
    
    gr.Markdown(
        """
        ## How to prompt your sound
        You can use round brackets to increase the importance of a part:
        ```
        Peaceful and (calming) ambient music with singing bowl and other instruments
        ```
        You can use several levels of round brackets to even more increase the importance of a part:
        ```
        (Peaceful) and ((calming)) ambient music with singing bowl and other instruments
        ```
        You can use number instead of several round brackets:
        ```
        (Peaceful:1.5) and ((calming)) ambient music with singing bowl and other instruments
        ```
        You can do the same thing with square brackets to decrease the importance of a part:
        ```
        (Peaceful:1.5) and ((calming)) ambient music with [singing:2] bowl and other instruments
        """
    )
        
    interface.queue(10).launch()