credit-scoring / app.py
deeploy-adubowski's picture
Hide loan application form automatically
b7a27fc
raw
history blame
15 kB
# type: ignore -- ignores linting import issues when using multiple virtual environments
import streamlit.components.v1 as components
import streamlit as st
import pandas as pd
import logging
from deeploy import Client
from constants import (
relationship_dict,
occupation_dict,
education_dict,
type_of_work_dict,
countries_dict,
marital_status_dict,
)
# reset Plotly theme after streamlit import
import plotly.io as pio
pio.templates.default = "plotly"
logging.basicConfig(level=logging.INFO)
st.set_page_config(layout="wide")
st.title("Credit-Scoring Model Explainability")
st.markdown(
"""
<style>
section[data-testid="stSidebar"] {
width: 300px !important; # Set the width to your desired value
}
</style>
""",
unsafe_allow_html=True,
)
def get_model_url():
model_url = st.text_area(
"Model URL (without the /explain endpoint, default is the demo deployment)",
"https://api.app.deeploy.ml/workspaces/708b5808-27af-461a-8ee5-80add68384c7/deployments/dc8c359d-5f61-4107-8b0f-de97ec120289/",
height=125,
)
elems = model_url.split("/")
try:
workspace_id = elems[4]
deployment_id = elems[6]
except IndexError:
workspace_id = ""
deployment_id = ""
return model_url, workspace_id, deployment_id
def ChangeButtonColour(widget_label, font_color, background_color="transparent"):
# func to change button colors
htmlstr = f"""
<script>
var elements = window.parent.document.querySelectorAll('button');
for (var i = 0; i < elements.length; ++i) {{
if (elements[i].innerText == '{widget_label}') {{
elements[i].style.color ='{font_color}';
elements[i].style.background = '{background_color}'
}}
}}
</script>
"""
components.html(f"{htmlstr}", height=0, width=0)
with st.sidebar:
st.image("deeploy_logo_wide.png", width=250)
# Ask for model URL and token
host = st.text_input("Host (Changing is optional)", "app.deeploy.ml")
model_url, workspace_id, deployment_id = get_model_url()
deployment_token = st.text_input("Deeploy Model Token", "my-secret-token")
if deployment_token == "my-secret-token":
st.warning("Please enter Deeploy API token.")
# Split model URL into workspace and deployment ID
# st.write("Values below are for debug only:")
# st.write("Workspace ID: ", workspace_id)
# st.write("Deployment ID: ", deployment_id)
client_options = {
"host": host,
"deployment_token": deployment_token,
"workspace_id": workspace_id,
}
client = Client(**client_options)
if "expander_toggle" not in st.session_state:
st.session_state.expander_toggle = True
def submit_and_clear():
try:
# Call the explain endpoint as it also includes the prediction
client.evaluate(
deployment_id, request_log_id, prediction_log_id, st.session_state.evaluation_input
)
st.toast(":green[Feedback submitted successfully.]", icon="✅")
st.session_state.eval_selected = False
st.session_state.predict_button_clicked = False
st.session_state.eval_selected = False
show_expander()
except Exception as e:
logging.error(e)
st.error(
"Failed to submit feedback."
+ "Check whether you are using the right model URL and token for evaluations. "
+ "Contact Deeploy if the problem persists."
)
st.toast(f"Failed to submit feedback: {e}")
def hide_expander():
st.session_state.expander_toggle = False
def show_expander():
st.session_state.expander_toggle = True
# Attributes
st.subheader("Loan Application")
with st.expander("Application form", expanded=st.session_state.expander_toggle):
# Split view in 2 columns
col1, col2 = st.columns(2)
with col1:
# Create input fields for attributes from constant dicts
age = st.number_input("Age", min_value=0, max_value=100, value=30)
marital_status = st.selectbox("Marital Status", marital_status_dict.keys())
marital_status_id = marital_status_dict[marital_status]
native_country = st.selectbox(
"Native Country", countries_dict.keys(), index=len(countries_dict) - 1
)
native_country_id = countries_dict[native_country]
relationship = st.selectbox("Family situation", relationship_dict.keys())
relationship_id = relationship_dict[relationship]
occupation = st.selectbox("Occupation", occupation_dict.keys(), index=1)
occupation_id = occupation_dict[occupation]
with col2:
education = st.selectbox("Highest education level", education_dict.keys(), index=4)
education_id = education_dict[education]
type_of_work = st.selectbox("Type of work", type_of_work_dict.keys())
type_of_work_id = type_of_work_dict[type_of_work]
hours_per_week = st.number_input(
"Working hours per week", min_value=0, max_value=100, value=40
)
capital_gain = st.number_input(
"Yearly income [€]", min_value=0, max_value=1000000, value=70000
)
capital_loss = st.number_input(
"Yearly expenditures [€]", min_value=0, max_value=1000000, value=60000
)
data_df = pd.DataFrame(
[
[
age,
type_of_work,
education,
marital_status,
occupation,
relationship,
capital_gain,
capital_loss,
hours_per_week,
native_country,
]
],
columns=[
"Age",
"Type of work",
"Highest education level",
"Marital Status",
"Occupation",
"Family situation",
"Yearly Income [€]",
"Yearly expenditures [€]",
"Working hours per week",
"Native Country",
],
)
data_df_t = data_df.T
request_body = {
"instances": [
[
age,
type_of_work_id,
education_id,
marital_status_id,
occupation_id,
relationship_id,
capital_gain,
capital_loss,
hours_per_week,
native_country_id,
]
]
}
if "predict_button_clicked" not in st.session_state:
st.session_state.predict_button_clicked = False
if deployment_token != "my-secret-token":
predict_button = st.button(
"Predict", key="predict_button", help="Click to get the AI prediction.", on_click=hide_expander
)
if predict_button:
st.session_state.predict_button_clicked = True
# st.session_state.selected = "Loan Decision"
with st.spinner("Loading prediction and explanation..."):
# Call the explain endpoint as it also includes the prediction
exp = client.explain(
request_body=request_body, deployment_id=deployment_id
)
st.session_state.exp = exp
if st.session_state.predict_button_clicked:
try:
exp = st.session_state.exp
# Read explanation to dataframe from json
predictions = exp["predictions"]
request_log_id = exp["requestLogId"]
prediction_log_id = exp["predictionLogIds"][0]
exp_df = pd.DataFrame(
[exp["explanations"][0]["shap_values"]], columns=exp["featureLabels"]
)
exp_df.columns = data_df.columns
exp_df_t = exp_df.T
# Merge data and explanation
exp_df_t = data_df_t.merge(exp_df_t, left_index=True, right_index=True)
weight_feat = "Weight"
exp_df_t.columns = ["Feature value", weight_feat]
exp_df_t["Feature"] = exp_df_t.index
exp_df_t = exp_df_t[["Feature", "Feature value", weight_feat]]
exp_df_t["Feature value"] = exp_df_t["Feature value"].astype(str)
# Filter values below 0.01
exp_df_t = exp_df_t[
(exp_df_t[weight_feat] > 0.01) | (exp_df_t[weight_feat] < -0.01)
]
exp_df_t[weight_feat] = exp_df_t[weight_feat].astype(float).round(2)
pos_exp_df_t = exp_df_t[exp_df_t[weight_feat] > 0]
pos_exp_df_t = pos_exp_df_t.sort_values(by=weight_feat, ascending=False)
neg_exp_df_t = exp_df_t[exp_df_t[weight_feat] < 0]
neg_exp_df_t = neg_exp_df_t.sort_values(by=weight_feat, ascending=True)
neg_exp_df_t[weight_feat] = neg_exp_df_t[weight_feat].abs()
# Get 3 features with highest positive relevance score
pos_feats = pos_exp_df_t[weight_feat].nlargest(3).index.tolist()
# For feature, get feature value and concatenate into a single string
pos_feats = [
f"{feat}: {pos_exp_df_t.loc[feat, 'Feature value']}"
for feat in pos_feats
]
# Get 3 features with highest negative relevance score
neg_feats = neg_exp_df_t[weight_feat].nlargest(3).index.tolist()
# For feature, get feature value and concatenate into a single string
neg_feats = [
f"{feat}: {neg_exp_df_t.loc[feat, 'Feature value']}"
for feat in neg_feats
]
if predictions[0]:
# Show prediction
st.subheader("Loan Decision: :green[POSITIVE]", divider="green")
# Format subheader to green
st.markdown(
"<style>.css-1v3fvcr{color: green;}</style>", unsafe_allow_html=True
)
# If prediction is positive, first show positive features, then negative features
st.success(
"**Positive creditworthiness**. This is primarily attributed to: \n - "
+ " \n- ".join(pos_feats)
)
st.warning(
"However, the following features weight ***against*** the loan application: \n - "
+ " \n- ".join(neg_feats)
+ " \n For more details, see full explanation of the credit assessment below.",
)
else:
st.subheader("Loan Decision: :red[NEGATIVE]", divider="red")
# If prediction is negative, first show negative features, then positive features
st.error(
"**Negative creditworthiness**. This is primarily attributed to: \n - "
+ " \n - ".join(neg_feats)
)
st.warning(
"However, the following factors weigh ***in favor*** of the loan applicant: \n - "
+ " \n - ".join(pos_feats)
+ " \n For more details, see full explanation of the credit assessment below.",
)
explanation_expander = st.expander("Show explanation")
with explanation_expander:
# Show explanation
col_pos, col_neg = st.columns(2)
with col_pos:
st.subheader("Factors :green[in favor] of loan approval")
# st.success("**Factors in favor of loan approval**")
st.dataframe(
pos_exp_df_t,
hide_index=True,
width=600,
column_config={
"Weight": st.column_config.ProgressColumn(
"Weight",
width="small",
format=" ",
min_value=0,
max_value=1,
)
},
)
with col_neg:
st.subheader("Factors :red[against] loan approval")
# st.error("**Factors against loan approval**")
st.dataframe(
neg_exp_df_t,
hide_index=True,
width=600,
column_config={
"Weight": st.column_config.ProgressColumn(
"Weight",
width="small",
format=" ",
min_value=0,
max_value=1,
)
},
)
st.divider()
# Add prediction evaluation
st.subheader("Evaluation: Do you agree with the predicted creditworthiness?")
st.info(
"AI model predictions always come with a certain level of uncertainty. \nEvaluate the correctness of the prediction based on your expertise and experience."
)
cols = st.columns(4)
col_yes, col_no = cols[:2]
with col_yes:
yes_button = st.button(
"Yes, I agree",
key="yes_button",
use_container_width=True,
help="Click if you agree with the prediction",
)
ChangeButtonColour("Yes, I agree", "white", "green")
with col_no:
no_button = st.button(
"No, I disagree",
key="no_button",
use_container_width=True,
help="Click if you disagree with the prediction",
type="primary",
)
ChangeButtonColour("No, I disagree", "white", "#DD360C")
# ChangeButtonColour("No, I disagree", "#DD360C", "#F0F0F0")
if "eval_selected" not in st.session_state:
st.session_state["eval_selected"] = False
if yes_button:
st.session_state.eval_selected = True
st.session_state.evaluation_input = {
"result": 0 # Agree with the prediction
}
st.session_state.placeholder = "Income is sufficient, given applicant's background"
if no_button:
st.session_state.eval_selected = True
desired_output = not predictions[0]
st.session_state.evaluation_input = {
"result": 1, # Disagree with the prediction
"value": {"predictions": [desired_output]},
}
st.session_state.placeholder = "Income is too low, given applicant's background"
if st.session_state.eval_selected:
comment = st.text_input("Would you like to add a comment?", placeholder=st.session_state.placeholder)
if comment:
st.session_state.evaluation_input["explanation"] = comment
st.button("Submit", key="submit_button", on_click=submit_and_clear)
except Exception as e:
logging.error(e)
st.error(
"Failed to retrieve the prediction or explanation."
+ "Check whether you are using the right model URL and Token. "
+ "Contact Deeploy if the problem persists."
)