Spaces:
Build error
Build error
from langchain.chains import RetrievalQA, ConversationalRetrievalChain | |
from langchain.memory import ( | |
ConversationBufferWindowMemory, | |
ConversationSummaryBufferMemory, | |
) | |
from langchain.chains.conversational_retrieval.prompts import QA_PROMPT | |
import os | |
from modules.config.constants import * | |
from modules.chat.helpers import get_prompt | |
from modules.chat.chat_model_loader import ChatModelLoader | |
from modules.vectorstore.store_manager import VectorStoreManager | |
from modules.retriever import Retriever | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union | |
from langchain_core.callbacks.manager import AsyncCallbackManagerForChainRun | |
import inspect | |
from langchain.chains.conversational_retrieval.base import _get_chat_history | |
from langchain_core.messages import BaseMessage | |
CHAT_TURN_TYPE = Union[Tuple[str, str], BaseMessage] | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_community.chat_models import ChatOpenAI | |
class CustomConversationalRetrievalChain(ConversationalRetrievalChain): | |
def _get_chat_history(self, chat_history: List[CHAT_TURN_TYPE]) -> str: | |
_ROLE_MAP = {"human": "Student: ", "ai": "AI Tutor: "} | |
buffer = "" | |
for dialogue_turn in chat_history: | |
if isinstance(dialogue_turn, BaseMessage): | |
role_prefix = _ROLE_MAP.get( | |
dialogue_turn.type, f"{dialogue_turn.type}: " | |
) | |
buffer += f"\n{role_prefix}{dialogue_turn.content}" | |
elif isinstance(dialogue_turn, tuple): | |
human = "Student: " + dialogue_turn[0] | |
ai = "AI Tutor: " + dialogue_turn[1] | |
buffer += "\n" + "\n".join([human, ai]) | |
else: | |
raise ValueError( | |
f"Unsupported chat history format: {type(dialogue_turn)}." | |
f" Full chat history: {chat_history} " | |
) | |
return buffer | |
async def _acall( | |
self, | |
inputs: Dict[str, Any], | |
run_manager: Optional[AsyncCallbackManagerForChainRun] = None, | |
) -> Dict[str, Any]: | |
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() | |
question = inputs["question"] | |
get_chat_history = self._get_chat_history | |
chat_history_str = get_chat_history(inputs["chat_history"]) | |
if chat_history_str: | |
# callbacks = _run_manager.get_child() | |
# new_question = await self.question_generator.arun( | |
# question=question, chat_history=chat_history_str, callbacks=callbacks | |
# ) | |
system = ( | |
"You are an AI Tutor helping a student. Your task is to rephrase the student's question to provide more context from their chat history (only if relevant), ensuring the rephrased question still reflects the student's point of view. " | |
"The rephrased question should incorporate relevant details from the chat history to make it clearer and more specific. It should also expand upon the original question to provide more context on only what the student provided." | |
"Always end the rephrased question with the original question in parentheses for reference. " | |
"Do not change the meaning of the question, and keep the tone and perspective as if it were asked by the student. " | |
"Here is the chat history for context: \n{chat_history_str}\n" | |
"Now, rephrase the following question: '{question}'" | |
) | |
prompt = ChatPromptTemplate.from_messages( | |
[ | |
("system", system), | |
("human", "{question}, {chat_history_str}"), | |
] | |
) | |
llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0) | |
step_back = prompt | llm | StrOutputParser() | |
new_question = step_back.invoke( | |
{"question": question, "chat_history_str": chat_history_str} | |
) | |
else: | |
new_question = question | |
accepts_run_manager = ( | |
"run_manager" in inspect.signature(self._aget_docs).parameters | |
) | |
if accepts_run_manager: | |
docs = await self._aget_docs(new_question, inputs, run_manager=_run_manager) | |
else: | |
docs = await self._aget_docs(new_question, inputs) # type: ignore[call-arg] | |
output: Dict[str, Any] = {} | |
if self.response_if_no_docs_found is not None and len(docs) == 0: | |
output[self.output_key] = self.response_if_no_docs_found | |
else: | |
new_inputs = inputs.copy() | |
if self.rephrase_question: | |
new_inputs["question"] = new_question | |
new_inputs["chat_history"] = chat_history_str | |
# Prepare the final prompt with metadata | |
context = "\n\n".join( | |
[ | |
f"Context {idx+1}: \n(Document content: {doc.page_content}\nMetadata: (source_file: {doc.metadata['source']}))" | |
for idx, doc in enumerate(docs) | |
] | |
) | |
final_prompt = ( | |
"You are an AI Tutor for the course DS598, taught by Prof. Thomas Gardos. " | |
"Use the following pieces of information to answer the user's question. " | |
"If you don't know the answer, try your best, but don't try to make up an answer. Keep the flow of the conversation going. " | |
"Use the chat history just as a gist to answer the question only if it's relevant; otherwise, ignore it. Do not repeat responses in the history. Use the context as a guide to construct your answer. The context for the answer will be under 'Document context:'. Remember, the conext may include text not directly related to the question." | |
"Make sure to use the source_file field in metadata from each document to provide links to the user to the correct sources. " | |
"The context is ordered by relevance to the question. " | |
"Talk in a friendly and personalized manner, similar to how you would speak to a friend who needs help. Make the conversation engaging and avoid sounding repetitive or robotic.\n\n" | |
f"Chat History:\n{chat_history_str}\n\n" | |
f"Context:\n{context}\n\n" | |
f"Student: {new_question}\n" | |
"Anwer the student's question in a friendly, concise, and engaging manner.\n" | |
"AI Tutor:" | |
) | |
new_inputs["input"] = final_prompt | |
new_inputs["question"] = final_prompt | |
output["final_prompt"] = final_prompt | |
answer = await self.combine_docs_chain.arun( | |
input_documents=docs, callbacks=_run_manager.get_child(), **new_inputs | |
) | |
output[self.output_key] = answer | |
if self.return_source_documents: | |
output["source_documents"] = docs | |
if self.return_generated_question: | |
output["generated_question"] = new_question | |
return output | |
class LLMTutor: | |
def __init__(self, config, logger=None): | |
self.config = config | |
self.llm = self.load_llm() | |
self.logger = logger | |
self.vector_db = VectorStoreManager(config, logger=self.logger) | |
if self.config["vectorstore"]["embedd_files"]: | |
self.vector_db.create_database() | |
self.vector_db.save_database() | |
def set_custom_prompt(self): | |
""" | |
Prompt template for QA retrieval for each vectorstore | |
""" | |
prompt = get_prompt(self.config) | |
# prompt = QA_PROMPT | |
return prompt | |
# Retrieval QA Chain | |
def retrieval_qa_chain(self, llm, prompt, db): | |
retriever = Retriever(self.config)._return_retriever(db) | |
if self.config["llm_params"]["use_history"]: | |
memory = ConversationBufferWindowMemory( | |
k=self.config["llm_params"]["memory_window"], | |
memory_key="chat_history", | |
return_messages=True, | |
output_key="answer", | |
max_token_limit=128, | |
) | |
qa_chain = CustomConversationalRetrievalChain.from_llm( | |
llm=llm, | |
chain_type="stuff", | |
retriever=retriever, | |
return_source_documents=True, | |
memory=memory, | |
combine_docs_chain_kwargs={"prompt": prompt}, | |
response_if_no_docs_found="No context found", | |
) | |
else: | |
qa_chain = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=retriever, | |
return_source_documents=True, | |
chain_type_kwargs={"prompt": prompt}, | |
) | |
return qa_chain | |
# Loading the model | |
def load_llm(self): | |
chat_model_loader = ChatModelLoader(self.config) | |
llm = chat_model_loader.load_chat_model() | |
return llm | |
# QA Model Function | |
def qa_bot(self): | |
db = self.vector_db.load_database() | |
qa_prompt = self.set_custom_prompt() | |
qa = self.retrieval_qa_chain( | |
self.llm, qa_prompt, db | |
) # TODO: PROMPT is overwritten in CustomConversationalRetrievalChain | |
return qa | |
# output function | |
def final_result(query): | |
qa_result = qa_bot() | |
response = qa_result({"query": query}) | |
return response | |