File size: 5,975 Bytes
f439c8b
 
 
 
 
 
 
 
cf70d81
f439c8b
a3354db
b5b699f
1153626
b5b699f
128f810
 
 
b5b699f
1153626
 
 
 
 
128f810
cf70d81
 
b5b699f
f439c8b
 
 
 
 
 
 
 
 
 
 
 
cf70d81
 
 
 
f439c8b
 
 
 
 
 
 
 
 
4dcca54
 
f439c8b
 
 
 
 
 
 
cf70d81
 
 
3fe637a
 
 
 
 
f439c8b
3fe637a
 
cf70d81
f439c8b
 
e51357b
f439c8b
 
 
 
4dcca54
f439c8b
 
 
 
 
 
 
 
 
 
 
 
cf70d81
 
f439c8b
 
 
 
 
 
 
 
 
b5b699f
 
b3adc23
f439c8b
 
 
b5b699f
e51357b
b3adc23
f439c8b
b5b699f
e51357b
 
f439c8b
 
 
 
 
 
 
b3adc23
f439c8b
 
 
b5b699f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import gradio as gr
import os
import openai
from newspaper import Article
import json
import re
from transformers import GPT2Tokenizer
import requests
import time

def text_prompt(page_url, azure_endpoint, contrase帽a, temp):
    # Reemplazar estas l铆neas con cadenas de texto fijas
    request = """Analizar el siguiente texto de una noticia en prensa y generar un informe tipo KYC (Know Your Customer) para an谩lisis de riesgos, considerando los siguientes aspectos:
1. Identificaci贸n de las partes involucradas (personas, empresas, entidades)
2. Actividades sospechosas o inusuales descritas en el texto

Una vez generada la respuesta, aplicale formato HTML"""
    
    system_role = """Actua como analista de riesgos especializado en cumplimiento normativo y KYC (Know Your Customer).
    Tendr谩s una s贸lida formaci贸n en finanzas, derecho o gesti贸n, y estar谩s familiarizado con la normativa local e internacional relacionada con la prevenci贸n del blanqueo de capitales y la financiaci贸n del terrorismo.
    Poseer谩s avanzadas capacidades anal铆ticas y de investigaci贸n, lo que te permitir谩 evaluar eficazmente la informaci贸n facilitada en las noticias y determinar el nivel de riesgo asociado a las partes implicadas.
    Tambi茅n tendr谩s excelentes dotes de comunicaci贸n escrita y verbal para presentar de forma clara y concisa las conclusiones en un informe accesible a los ejecutivos y otras partes interesadas de la organizaci贸n.
    Adem谩s, estar谩s al d铆a de las tendencias y novedades en el 谩mbito del cumplimiento de la normativa y la gesti贸n de riesgos.
    El formato de la respuesta ser谩 siempre HMTL."""

    start_time = time.time()
    
    try:
        headers = {'User-Agent': 'Chrome/83.0.4103.106'}
        response = requests.get(page_url, headers=headers)
        html = response.text

        page = Article('')
        page.set_html(html)
        page.parse()

    except Exception as e:
        return "", f"--- An error occurred while processing the URL: {e} ---", ""
    
    url_processing_time = time.time() - start_time
    print(f"URL processing time: {url_processing_time:.4f} seconds")
    
    start_time = time.time()
    tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
    sentences = page.text.split('.')
    
    tokens = []
    page_text = ""
    
    for sentence in sentences:
        tokens.extend(tokenizer.tokenize(sentence))
        
        # Trim text to a maximum of 3000 tokens
        if len(tokens) > 3000:
            break
        page_text += sentence + ". "
        
    # Delete the last space
    page_text = page_text.strip()
    num_tokens = len(tokens)

    tokenization_time = time.time() - start_time
    print(f"Tokenization time: {tokenization_time:.4f} seconds")

    if num_tokens > 10:
        # define azure openai context
        openai.api_type = "azure"
        openai.api_base = azure_endpoint
        openai.api_version = "2023-03-15-preview"
        openai.api_key = contrase帽a
        
        # get the response from Azure OpenAI API
        start_time = time.time()
        try:
            response = openai.ChatCompletion.create(
                engine="gpt-35-turbo-version-0301",
                messages=[
                    {"role": "system", "content": system_role},
                    {"role": "user", "content": request + "\n\n" + 'Text:\n\n"' + page_text + '\n"'}
                ],
                max_tokens=1024,
                temperature=temp,
                top_p=1.0,
            )
            # get the response text
            response_text = response['choices'][0]['message']['content']
            total_tokens = response["usage"]["total_tokens"]

            # clean the response text
            response_text = re.sub(r'\s+', ' ', response_text)
            response_text = f"#### [{page.title}]({page_url})\n\n{response_text.strip()}"
            total_tokens_str = str(total_tokens) + " (${:.2f} USD)".format(total_tokens/1000*0.002)

            api_processing_time = time.time() - start_time
            print(f"API processing time: {api_processing_time:.4f} seconds")

            return page.text, response_text, total_tokens_str
        except Exception as e:
            return page.text, f"--- An error occurred while processing the request: {e} ---", num_tokens
    return page.text, "--- Check API-Key or Min number of tokens:", str(num_tokens)

# define the gradio interface
iface = gr.Interface(
    fn=text_prompt,
    inputs=[
            gr.Textbox(lines=1, placeholder="Enter the Article's URL here...", label="Article's URL to analyse:", type="text"),
            gr.Textbox(lines=1, placeholder="Enter the MSFT Azure OpenAI endpoint here...", label="Azure endpoint:", type="text"),
            gr.Textbox(lines=1, placeholder="Enter your API-key here...", label="API-Key:", type="password"),
            gr.Slider(0.0,1.0, value=0.3, label="Temperature:")
            ],
    outputs=[gr.Textbox(label="Text from URL:"), gr.Markdown(label="Output from GPT:"), gr.Markdown(label="Total Tokens:")],
    examples=[[ "https://www.eleconomista.es/andalucia/noticias/11534190/12/21/Nueva-condena-a-ex-presidente-de-Invercaria-por-dar-300000-euros-a-una-empresa-inviable.html","","",0.2],
            ["https://www.eleconomista.es/andalucia/noticias/11533733/12/21/El-juez-procesa-a-35-investigados-en-la-pieza-de-las-sobrecomisiones-de-los-ERE-.html","","",0.2]
    ],
    title="ChatGPT - KYC from URL",
    description="""This tool allows to generate points of a KYC report based on the text retrieved from the URL using the [gpt-3.5-turbo] engine of MSFT Azure OpenAI.
    Provide the url for text retrieval, your endopoint, api-key and the temperature to process the text."""
)

# error capturing in integration as a component

error_message = ""

try:
    iface.queue(concurrency_count=5)
    iface.launch()
except Exception as e:
    error_message = "An error occurred: " + str(e)
    iface.outputs[1].value = error_message