File size: 14,241 Bytes
e4f334a
1c81243
 
22ca035
 
 
 
 
e4f334a
12781b6
eef17b3
1c81243
 
 
 
 
 
e4f334a
1c81243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f334a
1c81243
12781b6
 
 
 
1c81243
 
 
 
12781b6
1c81243
 
 
 
 
 
 
 
a1b7fc7
1c81243
 
 
 
 
 
 
 
67c9f99
1c81243
 
 
 
 
3e5ab39
e4f334a
 
12781b6
1c81243
 
 
 
 
b2d7917
a1d9fca
e4f334a
1c81243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12781b6
1c81243
 
e4f334a
1c81243
 
 
 
 
e4f334a
 
1c81243
 
 
e4f334a
1c81243
 
a1d9fca
1c81243
 
e4f334a
 
12781b6
e4f334a
 
 
1c81243
 
 
 
12781b6
1c81243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12781b6
1c81243
12781b6
e4f334a
1c81243
 
e4f334a
1c81243
 
 
 
 
e4f334a
1c81243
 
 
 
 
 
eef17b3
 
12781b6
e4f334a
eef17b3
 
1c81243
e4f334a
12781b6
1c81243
 
eef17b3
 
1c81243
e4f334a
eef17b3
 
1c81243
eef17b3
12781b6
1c81243
 
 
 
eef17b3
e4f334a
3e5ab39
1c81243
 
c8a64af
eef17b3
e4f334a
 
 
 
eef17b3
e4f334a
 
 
eef17b3
 
1c81243
 
 
 
 
e4f334a
 
1c81243
 
e4f334a
 
1c81243
 
 
 
e4f334a
 
 
 
1c81243
 
 
eef17b3
 
 
12781b6
 
 
eef17b3
 
054a63c
 
e4f334a
eef17b3
c4df96b
e4f334a
c4df96b
eef17b3
e4f334a
c4df96b
e4f334a
eef17b3
 
054a63c
eef17b3
 
e4f334a
eef17b3
 
e4f334a
eef17b3
d0bb39d
eef17b3
d0bb39d
1c81243
 
eef17b3
 
1c81243
e4f334a
 
c8a64af
5e6d549
e4f334a
1c81243
 
12781b6
 
eef17b3
1c81243
e4f334a
eef17b3
1c81243
e4f334a
652f191
c8a64af
eef17b3
e4f334a
 
 
1c81243
 
d0bb39d
12781b6
1c81243
e4f334a
eef17b3
e4f334a
 
 
eef17b3
12781b6
e4f334a
 
 
d0bb39d
e4f334a
1c81243
 
eef17b3
 
1c81243
e4f334a
eef17b3
12781b6
054a63c
 
e4f334a
1c81243
 
12781b6
1c81243
12781b6
 
1c81243
 
 
 
 
 
 
 
3e5ab39
e4f334a
 
1c81243
e4f334a
1c81243
e4f334a
 
 
 
054a63c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# %%
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import random
from matplotlib.ticker import MaxNLocator
from transformers import pipeline

MODEL_NAMES = ["bert-base-uncased", "roberta-base", "bert-large-uncased", "roberta-large"]
OWN_MODEL_NAME = 'add-a-model'

DECIMAL_PLACES = 1
EPS = 1e-5  # to avoid /0 errors

# Example date conts
DATE_SPLIT_KEY = "DATE"
START_YEAR = 1801
STOP_YEAR = 1999
NUM_PTS = 20
DATES = np.linspace(START_YEAR, STOP_YEAR, NUM_PTS).astype(int).tolist()
DATES = [f'{d}' for d in DATES]

# Example place conts
# https://www3.weforum.org/docs/WEF_GGGR_2021.pdf
# Bottom 10 and top 10 Global Gender Gap ranked countries.
PLACE_SPLIT_KEY = "PLACE"
PLACES = [
    "Afghanistan",
    "Yemen",
    "Iraq",
    "Pakistan",
    "Syria",
    "Democratic Republic of Congo",
    "Iran",
    "Mali",
    "Chad",
    "Saudi Arabia",
    "Switzerland",
    "Ireland",
    "Lithuania",
    "Rwanda",
    "Namibia",
    "Sweden",
    "New Zealand",
    "Norway",
    "Finland",
    "Iceland"]


# Example Reddit interest consts
# in order of increasing self-identified female participation.
# See http://bburky.com/subredditgenderratios/ , Minimum subreddit size: 400000
SUBREDDITS = [
    "GlobalOffensive",
    "pcmasterrace",
    "nfl",
    "sports",
    "The_Donald",
    "leagueoflegends",
    "Overwatch",
    "gonewild",
    "Futurology",
    "space",
    "technology",
    "gaming",
    "Jokes",
    "dataisbeautiful",
    "woahdude",
    "askscience",
    "wow",
    "anime",
    "BlackPeopleTwitter",
    "politics",
    "pokemon",
    "worldnews",
    "reddit.com",
    "interestingasfuck",
    "videos",
    "nottheonion",
    "television",
    "science",
    "atheism",
    "movies",
    "gifs",
    "Music",
    "trees",
    "EarthPorn",
    "GetMotivated",
    "pokemongo",
    "news",
    # removing below subreddit as most of the tokens are taken up by it:
    # ['ff', '##ff', '##ff', '##fu', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', ...]
    # "fffffffuuuuuuuuuuuu",
    "Fitness",
    "Showerthoughts",
    "OldSchoolCool",
    "explainlikeimfive",
    "todayilearned",
    "gameofthrones",
    "AdviceAnimals",
    "DIY",
    "WTF",
    "IAmA",
    "cringepics",
    "tifu",
    "mildlyinteresting",
    "funny",
    "pics",
    "LifeProTips",
    "creepy",
    "personalfinance",
    "food",
    "AskReddit",
    "books",
    "aww",
    "sex",
    "relationships",
]

GENDERED_LIST = [
    ['he', 'she'],
    ['him', 'her'],
    ['his', 'hers'],
    ["himself", "herself"],
    ['male', 'female'],
    ['man', 'woman'],
    ['men', 'women'],
    ["husband", "wife"],
    ['father', 'mother'],
    ['boyfriend', 'girlfriend'],
    ['brother', 'sister'],
    ["actor", "actress"],
]

# %%
# Fire up the models
models = dict()

for bert_like in MODEL_NAMES:
    models[bert_like] = pipeline("fill-mask", model=bert_like)

# %%


def get_gendered_token_ids():
    male_gendered_tokens = [list[0] for list in GENDERED_LIST]
    female_gendered_tokens = [list[1] for list in GENDERED_LIST]

    return male_gendered_tokens, female_gendered_tokens


def prepare_text_for_masking(input_text, mask_token, gendered_tokens, split_key):
    text_w_masks_list = [
        mask_token if word.lower() in gendered_tokens else word for word in input_text.split()]
    num_masks = len([m for m in text_w_masks_list if m == mask_token])

    text_portions = ' '.join(text_w_masks_list).split(split_key)
    return text_portions, num_masks


def get_avg_prob_from_pipeline_outputs(mask_filled_text, gendered_token, num_preds):
    pronoun_preds = [sum([
        pronoun["score"] if pronoun["token_str"].strip().lower() in gendered_token else 0.0
        for pronoun in top_preds])
        for top_preds in mask_filled_text
    ]
    return round(sum(pronoun_preds) / (EPS + num_preds) * 100, DECIMAL_PLACES)

# %%


def get_figure(df, gender, n_fit=1, model_name=None):
    df = df.set_index('x-axis')
    cols = df.columns
    xs = list(range(len(df)))
    ys = df[cols[0]]
    fig, ax = plt.subplots()
    # Trying small fig due to rendering issues on HF, not on VS Code
    fig.set_figheight(3)
    fig.set_figwidth(9)

    # find stackoverflow reference
    p, C_p = np.polyfit(xs, ys, n_fit, cov=1)
    t = np.linspace(min(xs)-1, max(xs)+1,  10*len(xs))
    TT = np.vstack([t**(n_fit-i) for i in range(n_fit+1)]).T

    # matrix multiplication calculates the polynomial values
    yi = np.dot(TT, p)
    C_yi = np.dot(TT, np.dot(C_p, TT.T))  # C_y = TT*C_z*TT.T
    sig_yi = np.sqrt(np.diag(C_yi))  # Standard deviations are sqrt of diagonal

    ax.fill_between(t, yi+sig_yi, yi-sig_yi, alpha=.25)
    ax.plot(t, yi, '-')
    ax.plot(df, 'ro')
    ax.legend(list(df.columns))

    ax.axis('tight')
    ax.set_xlabel("Value injected into input text")
    ax.set_title(
        f"Probability of predicting {gender} pronouns on {model_name}.")
    ax.set_ylabel(f"Softmax prob for pronouns")
    ax.xaxis.set_major_locator(MaxNLocator(6))
    ax.tick_params(axis='x', labelrotation=5)
    return fig


# %%
def predict_gender_pronouns(
    model_name,
    own_model_name,
    indie_vars,
    split_key,
    normalizing,
    n_fit,
    input_text,
):
    """Run inference on input_text for each model type, returning df and plots of percentage
    of gender pronouns predicted as female and male in each target text.
    """
    if model_name not in MODEL_NAMES:
        model = pipeline("fill-mask", model=own_model_name)
        model_name = OWN_MODEL_NAME
    else:
        model = models[model_name]

    mask_token = model.tokenizer.mask_token

    indie_vars_list = indie_vars.split(',')

    male_gendered_tokens, female_gendered_tokens = get_gendered_token_ids()

    text_segments, num_preds = prepare_text_for_masking(
        input_text, mask_token, male_gendered_tokens + female_gendered_tokens, split_key)

    male_pronoun_preds = []
    female_pronoun_preds = []
    for indie_var in indie_vars_list:

        target_text = f"{indie_var}".join(text_segments)
        mask_filled_text = model(target_text)
        # Quick hack as realized return type based on how many MASKs in text.
        if type(mask_filled_text[0]) is not list:
            mask_filled_text = [mask_filled_text]

        female_pronoun_preds.append(get_avg_prob_from_pipeline_outputs(
            mask_filled_text,
            female_gendered_tokens,
            num_preds
        ))
        male_pronoun_preds.append(get_avg_prob_from_pipeline_outputs(
            mask_filled_text,
            male_gendered_tokens,
            num_preds
        ))

    if normalizing:
        total_gendered_probs = np.add(
            female_pronoun_preds, male_pronoun_preds)
        female_pronoun_preds = np.around(
            np.divide(female_pronoun_preds, total_gendered_probs+EPS)*100,
            decimals=DECIMAL_PLACES
        )
        male_pronoun_preds = np.around(
            np.divide(male_pronoun_preds, total_gendered_probs+EPS)*100,
            decimals=DECIMAL_PLACES
        )

    results_df = pd.DataFrame({'x-axis': indie_vars_list})
    results_df['female_pronouns'] = female_pronoun_preds
    results_df['male_pronouns'] = male_pronoun_preds
    female_fig = get_figure(results_df.drop(
        'male_pronouns', axis=1), 'female',  n_fit, model_name)
    male_fig = get_figure(results_df.drop(
        'female_pronouns', axis=1), 'male',  n_fit, model_name)
    display_text = f"{random.choice(indie_vars_list)}".join(text_segments)

    return (
        display_text,
        female_fig,
        male_fig,
        results_df,
    )


# %%
title = "Causing Gender Pronouns"
description = """
## Intro 
"""


date_example = [
    MODEL_NAMES[1],
    '',  
    ', '.join(DATES),
    'DATE',
    "False",
    1,
    'She was a teenager in DATE.'
]


place_example = [
    MODEL_NAMES[0],
    '',  
    ', '.join(PLACES),
    'PLACE',
    "False",
    1,
    'She became an adult in PLACE.'
]


subreddit_example = [
    MODEL_NAMES[3],
    '',  
    ', '.join(SUBREDDITS),
    'SUBREDDIT',
    "False",
    1,
    'She was a kid. SUBREDDIT.'
]

own_model_example = [
    OWN_MODEL_NAME,
    'emilyalsentzer/Bio_ClinicalBERT',
    ', '.join(DATES),
    'DATE',
    "False",
    1,
    'She was exposed to the virus in DATE.'
]


def date_fn():
    return date_example


def place_fn():
    return place_example


def reddit_fn():
    return subreddit_example


def your_fn():
    return own_model_example


# %%
demo = gr.Blocks()
with demo:
    gr.Markdown("# Spurious Correlation Evaluation for Pre-trained LLMs")
    gr.Markdown("Find spurious correlations between seemingly independent variables (for example between `gender` and `time`) in almost any BERT-like LLM on Hugging Face, below.")

    # gr.Markdown("Note: If there is an issue with the rendering of the results taking longer than expected (more than 10s of seconds), there may be an unexpected issue effecting the hosting. If so, please see this [backup colab notebook](https://colab.research.google.com/drive/1A3a9cy9fERaxkuoX8YNTFhLlhRt_cxMm?usp=sharing).")    

       
    gr.Markdown("## Instructions for this Demo")
    gr.Markdown("1) Click on one of the examples below (where we sweep through a spectrum of `places`, `dates` and `subreddits`) to pre-populate the input fields.") 
    gr.Markdown("2) Check out the pre-populated fields as you scroll down to the ['Hit Submit...'] button!")
    gr.Markdown("3) Repeat steps (1) and (2) with more pre-populated inputs or with your own values in the input fields!")

    gr.Markdown("## Example inputs")
    gr.Markdown("Click a button below to pre-populate input fields with example values. Then scroll down to Hit Submit to generate predictions.")
    with gr.Row():
        date_gen = gr.Button('Click for date example inputs')
        gr.Markdown("<-- x-axis sorted by older to more recent dates:")

        place_gen = gr.Button('Click for country example inputs')
        gr.Markdown(
            "<-- x-axis sorted by bottom 10 and top 10 [Global Gender Gap](https://www3.weforum.org/docs/WEF_GGGR_2021.pdf) ranked countries:")

        subreddit_gen = gr.Button('Click for Subreddit example inputs')
        gr.Markdown(
            "<-- x-axis sorted in order of increasing self-identified female participation (see [bburky](http://bburky.com/subredditgenderratios/)): ")

        your_gen = gr.Button('Add-a-model example inputs')
        gr.Markdown("<-- x-axis dates, with your own model loaded! (If first time, try another example, it can take a while to load new model.)")

    gr.Markdown("## Input fields")
    gr.Markdown(
        f"A) Pick a spectrum of comma separated values for text injection and x-axis.")

    with gr.Row():
        x_axis = gr.Textbox(
            lines=3,
            label="A) Comma separated values for text injection and x-axis",
        )


    gr.Markdown("B) Pick a pre-loaded BERT-family model of interest on the right.")
    gr.Markdown(f"Or C) select `{OWN_MODEL_NAME}`, then add the name of any other Hugging Face model that supports the [fill-mask](https://huggingface.co/models?pipeline_tag=fill-mask) task on the right (note: this may take some time to load).")

    with gr.Row():
        model_name = gr.Radio(
            MODEL_NAMES + [OWN_MODEL_NAME],
            type="value",
            label="B) BERT-like model.",
        )
        own_model_name = gr.Textbox(
            label="C) If you selected an 'add-a-model' model, put any Hugging Face pipeline model name (that supports the fill-mask task) here.",
        )

    gr.Markdown("D) Pick if you want to the predictions normalied to these gendered terms only.")
    gr.Markdown("E) Also tell the demo what special token you will use in your input text, that you would like replaced with the spectrum of values you listed above.") 
    gr.Markdown("And F) the degree of polynomial fit used for high-lighting potential spurious association.")


    with gr.Row():
        to_normalize = gr.Dropdown(
            ["False", "True"],
            label="D) Normalize model's predictions to only the gendered ones?",
            type="index",
        )
        place_holder = gr.Textbox(
            label="E) Special token place-holder",
        )
        n_fit = gr.Dropdown(
            list(range(1, 5)),
            label="F) Degree of polynomial fit",
            type="value",
        )

    gr.Markdown(
        "G) Finally, add input text that includes at least one gendered pronouns and one place-holder token specified above.")

    with gr.Row():
        input_text = gr.Textbox(
            lines=2,
            label="G) Input text with pronouns and place-holder token",
        )

    gr.Markdown("## Outputs!")
    #gr.Markdown("Scroll down and 'Hit Submit'!")
    with gr.Row():
        btn = gr.Button("Hit submit to generate predictions!")

    with gr.Row():
        sample_text = gr.Textbox(
            type="auto", label="Output text: Sample of text fed to model")
    with gr.Row():
        female_fig = gr.Plot(type="auto")
        male_fig = gr.Plot(type="auto")
    with gr.Row():
        df = gr.Dataframe(
            show_label=True,
            overflow_row_behaviour="show_ends",
            label="Table of softmax probability for pronouns predictions",
        )

    with gr.Row():

        date_gen.click(date_fn, inputs=[], outputs=[model_name, own_model_name,
                       x_axis, place_holder, to_normalize,  n_fit, input_text])
        place_gen.click(place_fn, inputs=[], outputs=[
                        model_name, own_model_name, x_axis, place_holder, to_normalize,  n_fit, input_text])
        subreddit_gen.click(reddit_fn, inputs=[], outputs=[
                            model_name, own_model_name, x_axis, place_holder, to_normalize,  n_fit, input_text])
        your_gen.click(your_fn, inputs=[], outputs=[
            model_name, own_model_name, x_axis, place_holder, to_normalize,  n_fit, input_text])

    btn.click(
        predict_gender_pronouns,
        inputs=[model_name, own_model_name, x_axis, place_holder,
                to_normalize, n_fit, input_text],
        outputs=[sample_text, female_fig, male_fig, df])


demo.launch(debug=True)