TranscribeX / app.py
NealCaren's picture
Upload 2 files
159d2d1
import whisperx
import streamlit as st
import torch
import tempfile
import subprocess
def transcribe(audio_file):
if torch.cuda.is_available():
device = "gpu"
else:
device = "cpu"
batch_size = 16 # reduce if low on GPU mem
compute_type = "int8" # change to "float16" if high on GPU mem (may reduce accuracy)
YOUR_HF_TOKEN = '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'
# load audio file
audio_bytes = uploaded_file.getvalue()
with open(temp_file, 'wb') as f:
f.write(audio_bytes)
# 1. Transcribe with original whisper (batched)
model = whisperx.load_model("tiny", device = device, compute_type=compute_type)
audio = whisperx.load_audio(temp_file)
result = model.transcribe(audio, batch_size=batch_size)
st.write("Transcribed! Here's what we have so far:")
st.write(result["segments"]) # before alignment
# delete model if low on GPU resources
# import gc; gc.collect(); torch.cuda.empty_cache(); del model
# 2. Align whisper output
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
result = whisperx.align(result["segments"], model_a, metadata, audio, device, return_char_alignments=False)
st.write("Aligned! Here's what we have so far:")
st.write(result["segments"]) # after alignment
# delete model if low on GPU resources
# import gc; gc.collect(); torch.cuda.empty_cache(); del model_a
# 3. Assign speaker labels
diarize_model = whisperx.DiarizationPipeline(use_auth_token=YOUR_HF_TOKEN, device=device)
# add min/max number of speakers if known
diarize_segments = diarize_model(audio_file)
# diarize_model(audio_file, min_speakers=min_speakers, max_speakers=max_speakers)
result = whisperx.assign_word_speakers(diarize_segments, result)
st.write(diarize_segments)
st.write(result["segments"]) # segments are now assigned speaker IDs
st.title("Automated Transcription")
form = st.form(key='my_form')
uploaded_file = form.file_uploader("Choose a file")
submit = form.form_submit_button("Transcribe!")
if submit:
#temporary file to store audio_file
tmp_dir = tempfile.TemporaryDirectory()
temp_file = tmp_dir.name + '/mono.wav'
cmd = f"ffmpeg -y -i {uploaded_file} -acodec pcm_s16le -ar 16000 -ac 1 {temp_file}"
subprocess.Popen(cmd, shell=True).wait()
transcribe(temp_file)