Eric Michael Martinez
adding chatbot
6731167
import gradio as gr
import openai
import examples as chatbot_examples
from dotenv import load_dotenv
import os
load_dotenv() # take environment variables from .env.
# In order to authenticate, secrets must have been set, and the user supplied credentials match
def auth(username, password):
app_username = os.getenv("APP_USERNAME")
app_password = os.getenv("APP_PASSWORD")
if app_username and app_password:
if(username == app_username and password == app_password):
print("Logged in successfully.")
return True
else:
print("Username or password does not match.")
else:
print("Credential secrets not set.")
return False
# Define a function to get the AI's reply using the OpenAI API
def get_ai_reply(message, model="gpt-3.5-turbo", system_message=None, temperature=0, message_history=[]):
# Initialize the messages list
messages = []
# Add the system message to the messages list
if system_message is not None:
messages += [{"role": "system", "content": system_message}]
# Add the message history to the messages list
if message_history is not None:
messages += message_history
# Add the user's message to the messages list
messages += [{"role": "user", "content": message}]
# Make an API call to the OpenAI ChatCompletion endpoint with the model and messages
completion = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature
)
# Extract and return the AI's response from the API response
return completion.choices[0].message.content.strip()
# Define a function to handle the chat interaction with the AI model
def chat(model, system_message, message, chatbot_messages, history_state):
# Initialize chatbot_messages and history_state if they are not provided
chatbot_messages = chatbot_messages or []
history_state = history_state or []
# Try to get the AI's reply using the get_ai_reply function
try:
ai_reply = get_ai_reply(message, model=model, system_message=system_message, message_history=history_state)
# Append the user's message and the AI's reply to the chatbot_messages list
chatbot_messages.append((message, ai_reply))
# Append the user's message and the AI's reply to the history_state list
history_state.append({"role": "user", "content": message})
history_state.append({"role": "assistant", "content": ai_reply})
# Return None (empty out the user's message textbox), the updated chatbot_messages, and the updated history_state
except Exception as e:
# If an error occurs, raise a Gradio error
raise gr.Error(e)
return None, chatbot_messages, history_state
# Define a function to launch the chatbot interface using Gradio
def get_chatbot_app(additional_examples=[]):
# Load chatbot examples and merge with any additional examples provided
examples = chatbot_examples.load_examples(additional=additional_examples)
# Define a function to get the names of the examples
def get_examples():
return [example["name"] for example in examples]
# Define a function to choose an example based on the index
def choose_example(index):
if(index!=None):
system_message = examples[index]["system_message"].strip()
user_message = examples[index]["message"].strip()
return system_message, user_message, [], []
else:
return "", "", [], []
# Create the Gradio interface using the Blocks layout
with gr.Blocks() as app:
with gr.Tab("Conversation"):
with gr.Row():
with gr.Column():
# Create a dropdown to select examples
example_dropdown = gr.Dropdown(get_examples(), label="Examples", type="index")
# Create a button to load the selected example
example_load_btn = gr.Button(value="Load")
# Create a textbox for the system message (prompt)
system_message = gr.Textbox(label="System Message (Prompt)", value="You are a helpful assistant.")
with gr.Column():
# Create a dropdown to select the AI model
model_selector = gr.Dropdown(
["gpt-3.5-turbo"],
label="Model",
value="gpt-3.5-turbo"
)
# Create a chatbot interface for the conversation
chatbot = gr.Chatbot(label="Conversation")
# Create a textbox for the user's message
message = gr.Textbox(label="Message")
# Create a state object to store the conversation history
history_state = gr.State()
# Create a button to send the user's message
btn = gr.Button(value="Send")
# Connect the example load button to the choose_example function
example_load_btn.click(choose_example, inputs=[example_dropdown], outputs=[system_message, message, chatbot, history_state])
# Connect the send button to the chat function
btn.click(chat, inputs=[model_selector, system_message, message, chatbot, history_state], outputs=[message, chatbot, history_state])
# Return the app
return app
# Call the launch_chatbot function to start the chatbot interface using Gradio
# Set the share parameter to False, meaning the interface will not be publicly accessible
app = get_chatbot_app()
app.queue() # this is to be able to queue multiple requests at once
app.launch(auth=auth)