Spaces:
Runtime error
Runtime error
import gradio as gr | |
import openai | |
import examples as chatbot_examples | |
from dotenv import load_dotenv | |
import os | |
load_dotenv() # take environment variables from .env. | |
# In order to authenticate, secrets must have been set, and the user supplied credentials match | |
def auth(username, password): | |
app_username = os.getenv("APP_USERNAME") | |
app_password = os.getenv("APP_PASSWORD") | |
if app_username and app_password: | |
if(username == app_username and password == app_password): | |
print("Logged in successfully.") | |
return True | |
else: | |
print("Username or password does not match.") | |
else: | |
print("Credential secrets not set.") | |
return False | |
# Define a function to get the AI's reply using the OpenAI API | |
def get_ai_reply(message, model="gpt-3.5-turbo", system_message=None, temperature=0, message_history=[]): | |
# Initialize the messages list | |
messages = [] | |
# Add the system message to the messages list | |
if system_message is not None: | |
messages += [{"role": "system", "content": system_message}] | |
# Add the message history to the messages list | |
if message_history is not None: | |
messages += message_history | |
# Add the user's message to the messages list | |
messages += [{"role": "user", "content": message}] | |
# Make an API call to the OpenAI ChatCompletion endpoint with the model and messages | |
completion = openai.ChatCompletion.create( | |
model=model, | |
messages=messages, | |
temperature=temperature | |
) | |
# Extract and return the AI's response from the API response | |
return completion.choices[0].message.content.strip() | |
# Define a function to handle the chat interaction with the AI model | |
def chat(model, system_message, message, chatbot_messages, history_state): | |
# Initialize chatbot_messages and history_state if they are not provided | |
chatbot_messages = chatbot_messages or [] | |
history_state = history_state or [] | |
# Try to get the AI's reply using the get_ai_reply function | |
try: | |
ai_reply = get_ai_reply(message, model=model, system_message=system_message, message_history=history_state) | |
# Append the user's message and the AI's reply to the chatbot_messages list | |
chatbot_messages.append((message, ai_reply)) | |
# Append the user's message and the AI's reply to the history_state list | |
history_state.append({"role": "user", "content": message}) | |
history_state.append({"role": "assistant", "content": ai_reply}) | |
# Return None (empty out the user's message textbox), the updated chatbot_messages, and the updated history_state | |
except Exception as e: | |
# If an error occurs, raise a Gradio error | |
raise gr.Error(e) | |
return None, chatbot_messages, history_state | |
# Define a function to launch the chatbot interface using Gradio | |
def get_chatbot_app(additional_examples=[]): | |
# Load chatbot examples and merge with any additional examples provided | |
examples = chatbot_examples.load_examples(additional=additional_examples) | |
# Define a function to get the names of the examples | |
def get_examples(): | |
return [example["name"] for example in examples] | |
# Define a function to choose an example based on the index | |
def choose_example(index): | |
if(index!=None): | |
system_message = examples[index]["system_message"].strip() | |
user_message = examples[index]["message"].strip() | |
return system_message, user_message, [], [] | |
else: | |
return "", "", [], [] | |
# Create the Gradio interface using the Blocks layout | |
with gr.Blocks() as app: | |
with gr.Tab("Conversation"): | |
with gr.Row(): | |
with gr.Column(): | |
# Create a dropdown to select examples | |
example_dropdown = gr.Dropdown(get_examples(), label="Examples", type="index") | |
# Create a button to load the selected example | |
example_load_btn = gr.Button(value="Load") | |
# Create a textbox for the system message (prompt) | |
system_message = gr.Textbox(label="System Message (Prompt)", value="You are a helpful assistant.") | |
with gr.Column(): | |
# Create a dropdown to select the AI model | |
model_selector = gr.Dropdown( | |
["gpt-3.5-turbo"], | |
label="Model", | |
value="gpt-3.5-turbo" | |
) | |
# Create a chatbot interface for the conversation | |
chatbot = gr.Chatbot(label="Conversation") | |
# Create a textbox for the user's message | |
message = gr.Textbox(label="Message") | |
# Create a state object to store the conversation history | |
history_state = gr.State() | |
# Create a button to send the user's message | |
btn = gr.Button(value="Send") | |
# Connect the example load button to the choose_example function | |
example_load_btn.click(choose_example, inputs=[example_dropdown], outputs=[system_message, message, chatbot, history_state]) | |
# Connect the send button to the chat function | |
btn.click(chat, inputs=[model_selector, system_message, message, chatbot, history_state], outputs=[message, chatbot, history_state]) | |
# Return the app | |
return app | |
# Call the launch_chatbot function to start the chatbot interface using Gradio | |
# Set the share parameter to False, meaning the interface will not be publicly accessible | |
app = get_chatbot_app() | |
app.queue() # this is to be able to queue multiple requests at once | |
app.launch(auth=auth) | |