File size: 8,293 Bytes
8804c8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218


import numpy as np
import cv2
import math

def warpCoord(Minv, pt):
    out = np.matmul(Minv, (pt[0], pt[1], 1))
    return np.array([out[0]/out[2], out[1]/out[2]])


def getDetBoxes_core(textmap, linkmap, text_threshold, link_threshold, low_text):
    linkmap = linkmap.copy()
    textmap = textmap.copy()
    img_h, img_w = textmap.shape

    ret, text_score = cv2.threshold(textmap, low_text, 1, 0)
    ret, link_score = cv2.threshold(linkmap, link_threshold, 1, 0)

    text_score_comb = np.clip(text_score + link_score, 0, 1)
    nLabels, labels, stats, centroids = cv2.connectedComponentsWithStats(text_score_comb.astype(np.uint8), connectivity=4)

    det = []
    mapper = []
    for k in range(1,nLabels):
        size = stats[k, cv2.CC_STAT_AREA]
        if size < 10: continue

        if np.max(textmap[labels==k]) < text_threshold: continue

        segmap = np.zeros(textmap.shape, dtype=np.uint8)
        segmap[labels==k] = 255
        segmap[np.logical_and(link_score==1, text_score==0)] = 0   
        x, y = stats[k, cv2.CC_STAT_LEFT], stats[k, cv2.CC_STAT_TOP]
        w, h = stats[k, cv2.CC_STAT_WIDTH], stats[k, cv2.CC_STAT_HEIGHT]
        niter = int(math.sqrt(size * min(w, h) / (w * h)) * 2)
        sx, ex, sy, ey = x - niter, x + w + niter + 1, y - niter, y + h + niter + 1
        if sx < 0 : sx = 0
        if sy < 0 : sy = 0
        if ex >= img_w: ex = img_w
        if ey >= img_h: ey = img_h
        kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(1 + niter, 1 + niter))
        segmap[sy:ey, sx:ex] = cv2.dilate(segmap[sy:ey, sx:ex], kernel)

        np_contours = np.roll(np.array(np.where(segmap!=0)),1,axis=0).transpose().reshape(-1,2)
        rectangle = cv2.minAreaRect(np_contours)
        box = cv2.boxPoints(rectangle)

        w, h = np.linalg.norm(box[0] - box[1]), np.linalg.norm(box[1] - box[2])
        box_ratio = max(w, h) / (min(w, h) + 1e-5)
        if abs(1 - box_ratio) <= 0.1:
            l, r = min(np_contours[:,0]), max(np_contours[:,0])
            t, b = min(np_contours[:,1]), max(np_contours[:,1])
            box = np.array([[l, t], [r, t], [r, b], [l, b]], dtype=np.float32)

        startidx = box.sum(axis=1).argmin()
        box = np.roll(box, 4-startidx, 0)
        box = np.array(box)

        det.append(box)
        mapper.append(k)

    return det, labels, mapper

def getPoly_core(boxes, labels, mapper, linkmap):
    num_cp = 5
    max_len_ratio = 0.7
    expand_ratio = 1.45
    max_r = 2.0
    step_r = 0.2

    polys = []  
    for k, box in enumerate(boxes):
        w, h = int(np.linalg.norm(box[0] - box[1]) + 1), int(np.linalg.norm(box[1] - box[2]) + 1)
        if w < 10 or h < 10:
            polys.append(None); continue

        tar = np.float32([[0,0],[w,0],[w,h],[0,h]])
        M = cv2.getPerspectiveTransform(box, tar)
        word_label = cv2.warpPerspective(labels, M, (w, h), flags=cv2.INTER_NEAREST)
        try:
            Minv = np.linalg.inv(M)
        except:
            polys.append(None); continue

        cur_label = mapper[k]
        word_label[word_label != cur_label] = 0
        word_label[word_label > 0] = 1

        cp = []
        max_len = -1
        for i in range(w):
            region = np.where(word_label[:,i] != 0)[0]
            if len(region) < 2 : continue
            cp.append((i, region[0], region[-1]))
            length = region[-1] - region[0] + 1
            if length > max_len: max_len = length

        if h * max_len_ratio < max_len:
            polys.append(None); continue

        tot_seg = num_cp * 2 + 1
        seg_w = w / tot_seg     
        pp = [None] * num_cp    
        cp_section = [[0, 0]] * tot_seg
        seg_height = [0] * num_cp
        seg_num = 0
        num_sec = 0
        prev_h = -1
        for i in range(0,len(cp)):
            (x, sy, ey) = cp[i]
            if (seg_num + 1) * seg_w <= x and seg_num <= tot_seg:
                # average previous segment
                if num_sec == 0: break
                cp_section[seg_num] = [cp_section[seg_num][0] / num_sec, cp_section[seg_num][1] / num_sec]
                num_sec = 0

                # reset variables
                seg_num += 1
                prev_h = -1

            # accumulate center points
            cy = (sy + ey) * 0.5
            cur_h = ey - sy + 1
            cp_section[seg_num] = [cp_section[seg_num][0] + x, cp_section[seg_num][1] + cy]
            num_sec += 1

            if seg_num % 2 == 0: continue # No polygon area

            if prev_h < cur_h:
                pp[int((seg_num - 1)/2)] = (x, cy)
                seg_height[int((seg_num - 1)/2)] = cur_h
                prev_h = cur_h

        # processing last segment
        if num_sec != 0:
            cp_section[-1] = [cp_section[-1][0] / num_sec, cp_section[-1][1] / num_sec]

        # pass if num of pivots is not sufficient or segment widh is smaller than character height 
        if None in pp or seg_w < np.max(seg_height) * 0.25:
            polys.append(None); continue

        # calc median maximum of pivot points
        half_char_h = np.median(seg_height) * expand_ratio / 2

        # calc gradiant and apply to make horizontal pivots
        new_pp = []
        for i, (x, cy) in enumerate(pp):
            dx = cp_section[i * 2 + 2][0] - cp_section[i * 2][0]
            dy = cp_section[i * 2 + 2][1] - cp_section[i * 2][1]
            if dx == 0:     # gradient if zero
                new_pp.append([x, cy - half_char_h, x, cy + half_char_h])
                continue
            rad = - math.atan2(dy, dx)
            c, s = half_char_h * math.cos(rad), half_char_h * math.sin(rad)
            new_pp.append([x - s, cy - c, x + s, cy + c])

        # get edge points to cover character heatmaps
        isSppFound, isEppFound = False, False
        grad_s = (pp[1][1] - pp[0][1]) / (pp[1][0] - pp[0][0]) + (pp[2][1] - pp[1][1]) / (pp[2][0] - pp[1][0])
        grad_e = (pp[-2][1] - pp[-1][1]) / (pp[-2][0] - pp[-1][0]) + (pp[-3][1] - pp[-2][1]) / (pp[-3][0] - pp[-2][0])
        for r in np.arange(0.5, max_r, step_r):
            dx = 2 * half_char_h * r
            if not isSppFound:
                line_img = np.zeros(word_label.shape, dtype=np.uint8)
                dy = grad_s * dx
                p = np.array(new_pp[0]) - np.array([dx, dy, dx, dy])
                cv2.line(line_img, (int(p[0]), int(p[1])), (int(p[2]), int(p[3])), 1, thickness=1)
                if np.sum(np.logical_and(word_label, line_img)) == 0 or r + 2 * step_r >= max_r:
                    spp = p
                    isSppFound = True
            if not isEppFound:
                line_img = np.zeros(word_label.shape, dtype=np.uint8)
                dy = grad_e * dx
                p = np.array(new_pp[-1]) + np.array([dx, dy, dx, dy])
                cv2.line(line_img, (int(p[0]), int(p[1])), (int(p[2]), int(p[3])), 1, thickness=1)
                if np.sum(np.logical_and(word_label, line_img)) == 0 or r + 2 * step_r >= max_r:
                    epp = p
                    isEppFound = True
            if isSppFound and isEppFound:
                break

        if not (isSppFound and isEppFound):
            polys.append(None); continue

        poly = []
        poly.append(warpCoord(Minv, (spp[0], spp[1])))
        for p in new_pp:
            poly.append(warpCoord(Minv, (p[0], p[1])))
        poly.append(warpCoord(Minv, (epp[0], epp[1])))
        poly.append(warpCoord(Minv, (epp[2], epp[3])))
        for p in reversed(new_pp):
            poly.append(warpCoord(Minv, (p[2], p[3])))
        poly.append(warpCoord(Minv, (spp[2], spp[3])))

        # add to final result
        polys.append(np.array(poly))

    return polys

def getDetBoxes(textmap, linkmap, text_threshold, link_threshold, low_text, poly=False):
    boxes, labels, mapper = getDetBoxes_core(textmap, linkmap, text_threshold, link_threshold, low_text)

    if poly:
        polys = getPoly_core(boxes, labels, mapper, linkmap)
    else:
        polys = [None] * len(boxes)

    return boxes, polys

def adjustResultCoordinates(polys, ratio_w, ratio_h, ratio_net = 2):
    if len(polys) > 0:
        polys = np.array(polys)
        for k in range(len(polys)):
            if polys[k] is not None:
                polys[k] *= (ratio_w * ratio_net, ratio_h * ratio_net)
    return polys