Spaces:
Sleeping
Sleeping
import numpy as np | |
import cv2 | |
import math | |
def warpCoord(Minv, pt): | |
out = np.matmul(Minv, (pt[0], pt[1], 1)) | |
return np.array([out[0]/out[2], out[1]/out[2]]) | |
def getDetBoxes_core(textmap, linkmap, text_threshold, link_threshold, low_text): | |
linkmap = linkmap.copy() | |
textmap = textmap.copy() | |
img_h, img_w = textmap.shape | |
ret, text_score = cv2.threshold(textmap, low_text, 1, 0) | |
ret, link_score = cv2.threshold(linkmap, link_threshold, 1, 0) | |
text_score_comb = np.clip(text_score + link_score, 0, 1) | |
nLabels, labels, stats, centroids = cv2.connectedComponentsWithStats(text_score_comb.astype(np.uint8), connectivity=4) | |
det = [] | |
mapper = [] | |
for k in range(1,nLabels): | |
size = stats[k, cv2.CC_STAT_AREA] | |
if size < 10: continue | |
if np.max(textmap[labels==k]) < text_threshold: continue | |
segmap = np.zeros(textmap.shape, dtype=np.uint8) | |
segmap[labels==k] = 255 | |
segmap[np.logical_and(link_score==1, text_score==0)] = 0 | |
x, y = stats[k, cv2.CC_STAT_LEFT], stats[k, cv2.CC_STAT_TOP] | |
w, h = stats[k, cv2.CC_STAT_WIDTH], stats[k, cv2.CC_STAT_HEIGHT] | |
niter = int(math.sqrt(size * min(w, h) / (w * h)) * 2) | |
sx, ex, sy, ey = x - niter, x + w + niter + 1, y - niter, y + h + niter + 1 | |
if sx < 0 : sx = 0 | |
if sy < 0 : sy = 0 | |
if ex >= img_w: ex = img_w | |
if ey >= img_h: ey = img_h | |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(1 + niter, 1 + niter)) | |
segmap[sy:ey, sx:ex] = cv2.dilate(segmap[sy:ey, sx:ex], kernel) | |
np_contours = np.roll(np.array(np.where(segmap!=0)),1,axis=0).transpose().reshape(-1,2) | |
rectangle = cv2.minAreaRect(np_contours) | |
box = cv2.boxPoints(rectangle) | |
w, h = np.linalg.norm(box[0] - box[1]), np.linalg.norm(box[1] - box[2]) | |
box_ratio = max(w, h) / (min(w, h) + 1e-5) | |
if abs(1 - box_ratio) <= 0.1: | |
l, r = min(np_contours[:,0]), max(np_contours[:,0]) | |
t, b = min(np_contours[:,1]), max(np_contours[:,1]) | |
box = np.array([[l, t], [r, t], [r, b], [l, b]], dtype=np.float32) | |
startidx = box.sum(axis=1).argmin() | |
box = np.roll(box, 4-startidx, 0) | |
box = np.array(box) | |
det.append(box) | |
mapper.append(k) | |
return det, labels, mapper | |
def getPoly_core(boxes, labels, mapper, linkmap): | |
num_cp = 5 | |
max_len_ratio = 0.7 | |
expand_ratio = 1.45 | |
max_r = 2.0 | |
step_r = 0.2 | |
polys = [] | |
for k, box in enumerate(boxes): | |
w, h = int(np.linalg.norm(box[0] - box[1]) + 1), int(np.linalg.norm(box[1] - box[2]) + 1) | |
if w < 10 or h < 10: | |
polys.append(None); continue | |
tar = np.float32([[0,0],[w,0],[w,h],[0,h]]) | |
M = cv2.getPerspectiveTransform(box, tar) | |
word_label = cv2.warpPerspective(labels, M, (w, h), flags=cv2.INTER_NEAREST) | |
try: | |
Minv = np.linalg.inv(M) | |
except: | |
polys.append(None); continue | |
cur_label = mapper[k] | |
word_label[word_label != cur_label] = 0 | |
word_label[word_label > 0] = 1 | |
cp = [] | |
max_len = -1 | |
for i in range(w): | |
region = np.where(word_label[:,i] != 0)[0] | |
if len(region) < 2 : continue | |
cp.append((i, region[0], region[-1])) | |
length = region[-1] - region[0] + 1 | |
if length > max_len: max_len = length | |
if h * max_len_ratio < max_len: | |
polys.append(None); continue | |
tot_seg = num_cp * 2 + 1 | |
seg_w = w / tot_seg | |
pp = [None] * num_cp | |
cp_section = [[0, 0]] * tot_seg | |
seg_height = [0] * num_cp | |
seg_num = 0 | |
num_sec = 0 | |
prev_h = -1 | |
for i in range(0,len(cp)): | |
(x, sy, ey) = cp[i] | |
if (seg_num + 1) * seg_w <= x and seg_num <= tot_seg: | |
# average previous segment | |
if num_sec == 0: break | |
cp_section[seg_num] = [cp_section[seg_num][0] / num_sec, cp_section[seg_num][1] / num_sec] | |
num_sec = 0 | |
# reset variables | |
seg_num += 1 | |
prev_h = -1 | |
# accumulate center points | |
cy = (sy + ey) * 0.5 | |
cur_h = ey - sy + 1 | |
cp_section[seg_num] = [cp_section[seg_num][0] + x, cp_section[seg_num][1] + cy] | |
num_sec += 1 | |
if seg_num % 2 == 0: continue # No polygon area | |
if prev_h < cur_h: | |
pp[int((seg_num - 1)/2)] = (x, cy) | |
seg_height[int((seg_num - 1)/2)] = cur_h | |
prev_h = cur_h | |
# processing last segment | |
if num_sec != 0: | |
cp_section[-1] = [cp_section[-1][0] / num_sec, cp_section[-1][1] / num_sec] | |
# pass if num of pivots is not sufficient or segment widh is smaller than character height | |
if None in pp or seg_w < np.max(seg_height) * 0.25: | |
polys.append(None); continue | |
# calc median maximum of pivot points | |
half_char_h = np.median(seg_height) * expand_ratio / 2 | |
# calc gradiant and apply to make horizontal pivots | |
new_pp = [] | |
for i, (x, cy) in enumerate(pp): | |
dx = cp_section[i * 2 + 2][0] - cp_section[i * 2][0] | |
dy = cp_section[i * 2 + 2][1] - cp_section[i * 2][1] | |
if dx == 0: # gradient if zero | |
new_pp.append([x, cy - half_char_h, x, cy + half_char_h]) | |
continue | |
rad = - math.atan2(dy, dx) | |
c, s = half_char_h * math.cos(rad), half_char_h * math.sin(rad) | |
new_pp.append([x - s, cy - c, x + s, cy + c]) | |
# get edge points to cover character heatmaps | |
isSppFound, isEppFound = False, False | |
grad_s = (pp[1][1] - pp[0][1]) / (pp[1][0] - pp[0][0]) + (pp[2][1] - pp[1][1]) / (pp[2][0] - pp[1][0]) | |
grad_e = (pp[-2][1] - pp[-1][1]) / (pp[-2][0] - pp[-1][0]) + (pp[-3][1] - pp[-2][1]) / (pp[-3][0] - pp[-2][0]) | |
for r in np.arange(0.5, max_r, step_r): | |
dx = 2 * half_char_h * r | |
if not isSppFound: | |
line_img = np.zeros(word_label.shape, dtype=np.uint8) | |
dy = grad_s * dx | |
p = np.array(new_pp[0]) - np.array([dx, dy, dx, dy]) | |
cv2.line(line_img, (int(p[0]), int(p[1])), (int(p[2]), int(p[3])), 1, thickness=1) | |
if np.sum(np.logical_and(word_label, line_img)) == 0 or r + 2 * step_r >= max_r: | |
spp = p | |
isSppFound = True | |
if not isEppFound: | |
line_img = np.zeros(word_label.shape, dtype=np.uint8) | |
dy = grad_e * dx | |
p = np.array(new_pp[-1]) + np.array([dx, dy, dx, dy]) | |
cv2.line(line_img, (int(p[0]), int(p[1])), (int(p[2]), int(p[3])), 1, thickness=1) | |
if np.sum(np.logical_and(word_label, line_img)) == 0 or r + 2 * step_r >= max_r: | |
epp = p | |
isEppFound = True | |
if isSppFound and isEppFound: | |
break | |
if not (isSppFound and isEppFound): | |
polys.append(None); continue | |
poly = [] | |
poly.append(warpCoord(Minv, (spp[0], spp[1]))) | |
for p in new_pp: | |
poly.append(warpCoord(Minv, (p[0], p[1]))) | |
poly.append(warpCoord(Minv, (epp[0], epp[1]))) | |
poly.append(warpCoord(Minv, (epp[2], epp[3]))) | |
for p in reversed(new_pp): | |
poly.append(warpCoord(Minv, (p[2], p[3]))) | |
poly.append(warpCoord(Minv, (spp[2], spp[3]))) | |
# add to final result | |
polys.append(np.array(poly)) | |
return polys | |
def getDetBoxes(textmap, linkmap, text_threshold, link_threshold, low_text, poly=False): | |
boxes, labels, mapper = getDetBoxes_core(textmap, linkmap, text_threshold, link_threshold, low_text) | |
if poly: | |
polys = getPoly_core(boxes, labels, mapper, linkmap) | |
else: | |
polys = [None] * len(boxes) | |
return boxes, polys | |
def adjustResultCoordinates(polys, ratio_w, ratio_h, ratio_net = 2): | |
if len(polys) > 0: | |
polys = np.array(polys) | |
for k in range(len(polys)): | |
if polys[k] is not None: | |
polys[k] *= (ratio_w * ratio_net, ratio_h * ratio_net) | |
return polys | |