Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from basenet.vgg16_bn import vgg16_bn, init_weights | |
class double_conv(nn.Module): | |
def __init__(self, in_ch, mid_ch, out_ch): | |
super(double_conv, self).__init__() | |
self.conv = nn.Sequential( | |
nn.Conv2d(in_ch + mid_ch, mid_ch, kernel_size=1), | |
nn.BatchNorm2d(mid_ch), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(mid_ch, out_ch, kernel_size=3, padding=1), | |
nn.BatchNorm2d(out_ch), | |
nn.ReLU(inplace=True) | |
) | |
def forward(self, x): | |
x = self.conv(x) | |
return x | |
class CRAFT(nn.Module): | |
def __init__(self, pretrained=False, freeze=False): | |
super(CRAFT, self).__init__() | |
""" Base network """ | |
self.basenet = vgg16_bn(pretrained, freeze) | |
""" U network """ | |
self.upconv1 = double_conv(1024, 512, 256) | |
self.upconv2 = double_conv(512, 256, 128) | |
self.upconv3 = double_conv(256, 128, 64) | |
self.upconv4 = double_conv(128, 64, 32) | |
num_class = 2 | |
self.conv_cls = nn.Sequential( | |
nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True), | |
nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True), | |
nn.Conv2d(32, 16, kernel_size=3, padding=1), nn.ReLU(inplace=True), | |
nn.Conv2d(16, 16, kernel_size=1), nn.ReLU(inplace=True), | |
nn.Conv2d(16, num_class, kernel_size=1), | |
) | |
init_weights(self.upconv1.modules()) | |
init_weights(self.upconv2.modules()) | |
init_weights(self.upconv3.modules()) | |
init_weights(self.upconv4.modules()) | |
init_weights(self.conv_cls.modules()) | |
def forward(self, x): | |
""" Base network """ | |
sources = self.basenet(x) | |
""" U network """ | |
y = torch.cat([sources[0], sources[1]], dim=1) | |
y = self.upconv1(y) | |
y = F.interpolate(y, size=sources[2].size()[2:], mode='bilinear', align_corners=False) | |
y = torch.cat([y, sources[2]], dim=1) | |
y = self.upconv2(y) | |
y = F.interpolate(y, size=sources[3].size()[2:], mode='bilinear', align_corners=False) | |
y = torch.cat([y, sources[3]], dim=1) | |
y = self.upconv3(y) | |
y = F.interpolate(y, size=sources[4].size()[2:], mode='bilinear', align_corners=False) | |
y = torch.cat([y, sources[4]], dim=1) | |
feature = self.upconv4(y) | |
y = self.conv_cls(feature) | |
return y.permute(0,2,3,1), feature | |