Spaces:
Sleeping
Sleeping
""" | |
Copyright (c) 2019-present NAVER Corp. | |
MIT License | |
""" | |
# -*- coding: utf-8 -*- | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
from basenet.vgg16_bn import init_weights | |
class RefineNet(nn.Module): | |
def __init__(self): | |
super(RefineNet, self).__init__() | |
self.last_conv = nn.Sequential( | |
nn.Conv2d(34, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True), | |
nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True), | |
nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True) | |
) | |
self.aspp1 = nn.Sequential( | |
nn.Conv2d(64, 128, kernel_size=3, dilation=6, padding=6), nn.BatchNorm2d(128), nn.ReLU(inplace=True), | |
nn.Conv2d(128, 128, kernel_size=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True), | |
nn.Conv2d(128, 1, kernel_size=1) | |
) | |
self.aspp2 = nn.Sequential( | |
nn.Conv2d(64, 128, kernel_size=3, dilation=12, padding=12), nn.BatchNorm2d(128), nn.ReLU(inplace=True), | |
nn.Conv2d(128, 128, kernel_size=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True), | |
nn.Conv2d(128, 1, kernel_size=1) | |
) | |
self.aspp3 = nn.Sequential( | |
nn.Conv2d(64, 128, kernel_size=3, dilation=18, padding=18), nn.BatchNorm2d(128), nn.ReLU(inplace=True), | |
nn.Conv2d(128, 128, kernel_size=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True), | |
nn.Conv2d(128, 1, kernel_size=1) | |
) | |
self.aspp4 = nn.Sequential( | |
nn.Conv2d(64, 128, kernel_size=3, dilation=24, padding=24), nn.BatchNorm2d(128), nn.ReLU(inplace=True), | |
nn.Conv2d(128, 128, kernel_size=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True), | |
nn.Conv2d(128, 1, kernel_size=1) | |
) | |
init_weights(self.last_conv.modules()) | |
init_weights(self.aspp1.modules()) | |
init_weights(self.aspp2.modules()) | |
init_weights(self.aspp3.modules()) | |
init_weights(self.aspp4.modules()) | |
def forward(self, y, upconv4): | |
refine = torch.cat([y.permute(0,3,1,2), upconv4], dim=1) | |
refine = self.last_conv(refine) | |
aspp1 = self.aspp1(refine) | |
aspp2 = self.aspp2(refine) | |
aspp3 = self.aspp3(refine) | |
aspp4 = self.aspp4(refine) | |
#out = torch.add([aspp1, aspp2, aspp3, aspp4], dim=1) | |
out = aspp1 + aspp2 + aspp3 + aspp4 | |
return out.permute(0, 2, 3, 1) # , refine.permute(0,2,3,1) | |