Spaces:
Running
on
Zero
Running
on
Zero
ZeroGPU
#3
by
hysts
HF staff
- opened
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
from torchvision import transforms
|
4 |
from SDXL.diff_pipe import StableDiffusionXLDiffImg2ImgPipeline
|
@@ -9,7 +10,7 @@ device = "cuda"
|
|
9 |
|
10 |
base = StableDiffusionXLDiffImg2ImgPipeline.from_pretrained(
|
11 |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
12 |
-
)
|
13 |
|
14 |
refiner = StableDiffusionXLDiffImg2ImgPipeline.from_pretrained(
|
15 |
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
@@ -18,7 +19,7 @@ refiner = StableDiffusionXLDiffImg2ImgPipeline.from_pretrained(
|
|
18 |
torch_dtype=torch.float16,
|
19 |
use_safetensors=True,
|
20 |
variant="fp16",
|
21 |
-
)
|
22 |
|
23 |
base.scheduler = DPMSolverMultistepScheduler.from_config(base.scheduler.config)
|
24 |
refiner.scheduler = DPMSolverMultistepScheduler.from_config(base.scheduler.config)
|
@@ -42,24 +43,21 @@ def preprocess_map(map):
|
|
42 |
return map
|
43 |
|
44 |
|
|
|
45 |
def inference(image, map, gs, prompt, negative_prompt):
|
46 |
validate_inputs(image, map)
|
47 |
image = preprocess_image(image)
|
48 |
map = preprocess_map(map)
|
49 |
-
|
50 |
-
edited_images = base_cuda(prompt=prompt, original_image=image, image=image, strength=1, guidance_scale=gs,
|
51 |
num_images_per_prompt=1,
|
52 |
negative_prompt=negative_prompt,
|
53 |
map=map,
|
54 |
num_inference_steps=NUM_INFERENCE_STEPS, denoising_end=0.8, output_type="latent").images
|
55 |
-
|
56 |
-
refiner_cuda = refiner.to(device)
|
57 |
-
edited_images = refiner_cuda(prompt=prompt, original_image=image, image=edited_images, strength=1, guidance_scale=7.5,
|
58 |
num_images_per_prompt=1,
|
59 |
negative_prompt=negative_prompt,
|
60 |
map=map,
|
61 |
num_inference_steps=NUM_INFERENCE_STEPS, denoising_start=0.8).images[0]
|
62 |
-
refiner_cuda=None
|
63 |
return edited_images
|
64 |
|
65 |
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
import torch
|
4 |
from torchvision import transforms
|
5 |
from SDXL.diff_pipe import StableDiffusionXLDiffImg2ImgPipeline
|
|
|
10 |
|
11 |
base = StableDiffusionXLDiffImg2ImgPipeline.from_pretrained(
|
12 |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
13 |
+
).to(device)
|
14 |
|
15 |
refiner = StableDiffusionXLDiffImg2ImgPipeline.from_pretrained(
|
16 |
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
|
|
19 |
torch_dtype=torch.float16,
|
20 |
use_safetensors=True,
|
21 |
variant="fp16",
|
22 |
+
).to(device)
|
23 |
|
24 |
base.scheduler = DPMSolverMultistepScheduler.from_config(base.scheduler.config)
|
25 |
refiner.scheduler = DPMSolverMultistepScheduler.from_config(base.scheduler.config)
|
|
|
43 |
return map
|
44 |
|
45 |
|
46 |
+
@spaces.GPU
|
47 |
def inference(image, map, gs, prompt, negative_prompt):
|
48 |
validate_inputs(image, map)
|
49 |
image = preprocess_image(image)
|
50 |
map = preprocess_map(map)
|
51 |
+
edited_images = base(prompt=prompt, original_image=image, image=image, strength=1, guidance_scale=gs,
|
|
|
52 |
num_images_per_prompt=1,
|
53 |
negative_prompt=negative_prompt,
|
54 |
map=map,
|
55 |
num_inference_steps=NUM_INFERENCE_STEPS, denoising_end=0.8, output_type="latent").images
|
56 |
+
edited_images = refiner(prompt=prompt, original_image=image, image=edited_images, strength=1, guidance_scale=7.5,
|
|
|
|
|
57 |
num_images_per_prompt=1,
|
58 |
negative_prompt=negative_prompt,
|
59 |
map=map,
|
60 |
num_inference_steps=NUM_INFERENCE_STEPS, denoising_start=0.8).images[0]
|
|
|
61 |
return edited_images
|
62 |
|
63 |
|