badayvedat's picture
feat: add local version of lcm model
cf12300
raw
history blame
4.6 kB
import threading
from collections import deque
from dataclasses import dataclass
from typing import Optional
import gradio as gr
from PIL import Image
from constants import DESCRIPTION, LOGO
from gradio_examples import EXAMPLES
from model import get_pipeline
from utils import replace_background
MAX_QUEUE_SIZE = 4
pipeline = get_pipeline()
@dataclass
class GenerationState:
prompts: deque
generations: deque
def get_initial_state() -> GenerationState:
return GenerationState(
prompts=deque(maxlen=MAX_QUEUE_SIZE),
generations=deque(maxlen=MAX_QUEUE_SIZE),
)
def load_initial_state(request: gr.Request) -> GenerationState:
print("Loading initial state for", request.client.host)
print("Total number of active threads", threading.active_count())
return get_initial_state()
async def put_to_queue(
image: Optional[Image.Image],
prompt: str,
seed: int,
strength: float,
state: GenerationState,
):
prompts_queue = state.prompts
if prompt and image is not None:
prompts_queue.append((image, prompt, seed, strength))
return state
def inference(state: GenerationState) -> Image.Image:
prompts_queue = state.prompts
generations_queue = state.generations
if len(prompts_queue) == 0:
return state
image, prompt, seed, strength = prompts_queue.popleft()
original_image_size = image.size
image = replace_background(image.resize((512, 512)))
result = pipeline(
prompt=prompt,
image=image,
strength=strength,
seed=seed,
guidance_scale=1,
num_inference_steps=4,
)
output_image = result.images[0].resize(original_image_size)
generations_queue.append(output_image)
return state
def update_output_image(state: GenerationState):
image_update = gr.update()
generations_queue = state.generations
if len(generations_queue) > 0:
generated_image = generations_queue.popleft()
image_update = gr.update(value=generated_image)
return image_update, state
with gr.Blocks(css="style.css", title=f"Realtime Latent Consistency Model") as demo:
generation_state = gr.State(get_initial_state())
gr.HTML(f'<div style="width: 70px;">{LOGO}</div>')
gr.Markdown(DESCRIPTION)
with gr.Row(variant="default"):
input_image = gr.Image(
tool="color-sketch",
source="canvas",
label="Initial Image",
type="pil",
height=512,
width=512,
brush_radius=40.0,
)
output_image = gr.Image(
label="Generated Image",
type="pil",
interactive=False,
elem_id="output_image",
)
with gr.Row():
with gr.Column():
prompt_box = gr.Textbox(label="Prompt", value=EXAMPLES[0])
with gr.Accordion(label="Advanced Options", open=False):
with gr.Row():
with gr.Column():
strength = gr.Slider(
label="Strength",
minimum=0.1,
maximum=1.0,
step=0.05,
value=0.8,
info="""
Strength of the initial image that will be applied during inference.
""",
)
with gr.Column():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=2**31 - 1,
step=1,
randomize=True,
info="""
Seed for the random number generator.
""",
)
demo.load(
load_initial_state,
outputs=[generation_state],
)
demo.load(
inference,
inputs=[generation_state],
outputs=[generation_state],
every=0.1,
)
demo.load(
update_output_image,
inputs=[generation_state],
outputs=[output_image, generation_state],
every=0.1,
)
for event in [input_image.change, prompt_box.change, strength.change, seed.change]:
event(
put_to_queue,
[input_image, prompt_box, seed, strength, generation_state],
[generation_state],
show_progress=False,
queue=True,
)
gr.Markdown("## Example Prompts")
gr.Examples(examples=EXAMPLES, inputs=[prompt_box], label="Examples")
if __name__ == "__main__":
demo.queue(concurrency_count=20, api_open=False).launch(max_threads=1024)