Spaces:
Running
on
L40S
Running
on
L40S
File size: 8,954 Bytes
c705408 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
# Benchmark script for LightGlue on real images
import argparse
import time
from collections import defaultdict
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch._dynamo
from lightglue import LightGlue, SuperPoint
from lightglue.utils import load_image
torch.set_grad_enabled(False)
def measure(matcher, data, device="cuda", r=100):
timings = np.zeros((r, 1))
if device.type == "cuda":
starter = torch.cuda.Event(enable_timing=True)
ender = torch.cuda.Event(enable_timing=True)
# warmup
for _ in range(10):
_ = matcher(data)
# measurements
with torch.no_grad():
for rep in range(r):
if device.type == "cuda":
starter.record()
_ = matcher(data)
ender.record()
# sync gpu
torch.cuda.synchronize()
curr_time = starter.elapsed_time(ender)
else:
start = time.perf_counter()
_ = matcher(data)
curr_time = (time.perf_counter() - start) * 1e3
timings[rep] = curr_time
mean_syn = np.sum(timings) / r
std_syn = np.std(timings)
return {"mean": mean_syn, "std": std_syn}
def print_as_table(d, title, cnames):
print()
header = f"{title:30} " + " ".join([f"{x:>7}" for x in cnames])
print(header)
print("-" * len(header))
for k, l in d.items():
print(f"{k:30}", " ".join([f"{x:>7.1f}" for x in l]))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Benchmark script for LightGlue")
parser.add_argument(
"--device",
choices=["auto", "cuda", "cpu", "mps"],
default="auto",
help="device to benchmark on",
)
parser.add_argument("--compile", action="store_true", help="Compile LightGlue runs")
parser.add_argument(
"--no_flash", action="store_true", help="disable FlashAttention"
)
parser.add_argument(
"--no_prune_thresholds",
action="store_true",
help="disable pruning thresholds (i.e. always do pruning)",
)
parser.add_argument(
"--add_superglue",
action="store_true",
help="add SuperGlue to the benchmark (requires hloc)",
)
parser.add_argument(
"--measure", default="time", choices=["time", "log-time", "throughput"]
)
parser.add_argument(
"--repeat", "--r", type=int, default=100, help="repetitions of measurements"
)
parser.add_argument(
"--num_keypoints",
nargs="+",
type=int,
default=[256, 512, 1024, 2048, 4096],
help="number of keypoints (list separated by spaces)",
)
parser.add_argument(
"--matmul_precision", default="highest", choices=["highest", "high", "medium"]
)
parser.add_argument(
"--save", default=None, type=str, help="path where figure should be saved"
)
args = parser.parse_intermixed_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.device != "auto":
device = torch.device(args.device)
print("Running benchmark on device:", device)
images = Path("assets")
inputs = {
"easy": (
load_image(images / "DSC_0411.JPG"),
load_image(images / "DSC_0410.JPG"),
),
"difficult": (
load_image(images / "sacre_coeur1.jpg"),
load_image(images / "sacre_coeur2.jpg"),
),
}
configs = {
"LightGlue-full": {
"depth_confidence": -1,
"width_confidence": -1,
},
# 'LG-prune': {
# 'width_confidence': -1,
# },
# 'LG-depth': {
# 'depth_confidence': -1,
# },
"LightGlue-adaptive": {},
}
if args.compile:
configs = {**configs, **{k + "-compile": v for k, v in configs.items()}}
sg_configs = {
# 'SuperGlue': {},
"SuperGlue-fast": {"sinkhorn_iterations": 5}
}
torch.set_float32_matmul_precision(args.matmul_precision)
results = {k: defaultdict(list) for k, v in inputs.items()}
extractor = SuperPoint(max_num_keypoints=None, detection_threshold=-1)
extractor = extractor.eval().to(device)
figsize = (len(inputs) * 4.5, 4.5)
fig, axes = plt.subplots(1, len(inputs), sharey=True, figsize=figsize)
axes = axes if len(inputs) > 1 else [axes]
fig.canvas.manager.set_window_title(f"LightGlue benchmark ({device.type})")
for title, ax in zip(inputs.keys(), axes):
ax.set_xscale("log", base=2)
bases = [2**x for x in range(7, 16)]
ax.set_xticks(bases, bases)
ax.grid(which="major")
if args.measure == "log-time":
ax.set_yscale("log")
yticks = [10**x for x in range(6)]
ax.set_yticks(yticks, yticks)
mpos = [10**x * i for x in range(6) for i in range(2, 10)]
mlabel = [
10**x * i if i in [2, 5] else None
for x in range(6)
for i in range(2, 10)
]
ax.set_yticks(mpos, mlabel, minor=True)
ax.grid(which="minor", linewidth=0.2)
ax.set_title(title)
ax.set_xlabel("# keypoints")
if args.measure == "throughput":
ax.set_ylabel("Throughput [pairs/s]")
else:
ax.set_ylabel("Latency [ms]")
for name, conf in configs.items():
print("Run benchmark for:", name)
torch.cuda.empty_cache()
matcher = LightGlue(features="superpoint", flash=not args.no_flash, **conf)
if args.no_prune_thresholds:
matcher.pruning_keypoint_thresholds = {
k: -1 for k in matcher.pruning_keypoint_thresholds
}
matcher = matcher.eval().to(device)
if name.endswith("compile"):
import torch._dynamo
torch._dynamo.reset() # avoid buffer overflow
matcher.compile()
for pair_name, ax in zip(inputs.keys(), axes):
image0, image1 = [x.to(device) for x in inputs[pair_name]]
runtimes = []
for num_kpts in args.num_keypoints:
extractor.conf.max_num_keypoints = num_kpts
feats0 = extractor.extract(image0)
feats1 = extractor.extract(image1)
runtime = measure(
matcher,
{"image0": feats0, "image1": feats1},
device=device,
r=args.repeat,
)["mean"]
results[pair_name][name].append(
1000 / runtime if args.measure == "throughput" else runtime
)
ax.plot(
args.num_keypoints, results[pair_name][name], label=name, marker="o"
)
del matcher, feats0, feats1
if args.add_superglue:
from hloc.matchers.superglue import SuperGlue
for name, conf in sg_configs.items():
print("Run benchmark for:", name)
matcher = SuperGlue(conf)
matcher = matcher.eval().to(device)
for pair_name, ax in zip(inputs.keys(), axes):
image0, image1 = [x.to(device) for x in inputs[pair_name]]
runtimes = []
for num_kpts in args.num_keypoints:
extractor.conf.max_num_keypoints = num_kpts
feats0 = extractor.extract(image0)
feats1 = extractor.extract(image1)
data = {
"image0": image0[None],
"image1": image1[None],
**{k + "0": v for k, v in feats0.items()},
**{k + "1": v for k, v in feats1.items()},
}
data["scores0"] = data["keypoint_scores0"]
data["scores1"] = data["keypoint_scores1"]
data["descriptors0"] = (
data["descriptors0"].transpose(-1, -2).contiguous()
)
data["descriptors1"] = (
data["descriptors1"].transpose(-1, -2).contiguous()
)
runtime = measure(matcher, data, device=device, r=args.repeat)[
"mean"
]
results[pair_name][name].append(
1000 / runtime if args.measure == "throughput" else runtime
)
ax.plot(
args.num_keypoints, results[pair_name][name], label=name, marker="o"
)
del matcher, data, image0, image1, feats0, feats1
for name, runtimes in results.items():
print_as_table(runtimes, name, args.num_keypoints)
axes[0].legend()
fig.tight_layout()
if args.save:
plt.savefig(args.save, dpi=fig.dpi)
plt.show()
|