File size: 2,940 Bytes
c705408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.


import torch
import dataclasses
import torch.nn.functional as F
from dataclasses import dataclass
from typing import Any, Optional


@dataclass(eq=False)
class CoTrackerData:
    """
    Dataclass for storing video tracks data.
    """

    video: torch.Tensor  # B, S, C, H, W
    trajectory: torch.Tensor  # B, S, N, 2
    visibility: torch.Tensor  # B, S, N
    # optional data
    valid: Optional[torch.Tensor] = None  # B, S, N
    segmentation: Optional[torch.Tensor] = None  # B, S, 1, H, W
    seq_name: Optional[str] = None
    query_points: Optional[torch.Tensor] = None  # TapVID evaluation format


def collate_fn(batch):
    """
    Collate function for video tracks data.
    """
    video = torch.stack([b.video for b in batch], dim=0)
    trajectory = torch.stack([b.trajectory for b in batch], dim=0)
    visibility = torch.stack([b.visibility for b in batch], dim=0)
    query_points = segmentation = None
    if batch[0].query_points is not None:
        query_points = torch.stack([b.query_points for b in batch], dim=0)
    if batch[0].segmentation is not None:
        segmentation = torch.stack([b.segmentation for b in batch], dim=0)
    seq_name = [b.seq_name for b in batch]

    return CoTrackerData(
        video=video,
        trajectory=trajectory,
        visibility=visibility,
        segmentation=segmentation,
        seq_name=seq_name,
        query_points=query_points,
    )


def collate_fn_train(batch):
    """
    Collate function for video tracks data during training.
    """
    gotit = [gotit for _, gotit in batch]
    video = torch.stack([b.video for b, _ in batch], dim=0)
    trajectory = torch.stack([b.trajectory for b, _ in batch], dim=0)
    visibility = torch.stack([b.visibility for b, _ in batch], dim=0)
    valid = torch.stack([b.valid for b, _ in batch], dim=0)
    seq_name = [b.seq_name for b, _ in batch]
    return (
        CoTrackerData(
            video=video,
            trajectory=trajectory,
            visibility=visibility,
            valid=valid,
            seq_name=seq_name,
        ),
        gotit,
    )


def try_to_cuda(t: Any) -> Any:
    """
    Try to move the input variable `t` to a cuda device.

    Args:
        t: Input.

    Returns:
        t_cuda: `t` moved to a cuda device, if supported.
    """
    try:
        t = t.float().cuda()
    except AttributeError:
        pass
    return t


def dataclass_to_cuda_(obj):
    """
    Move all contents of a dataclass to cuda inplace if supported.

    Args:
        batch: Input dataclass.

    Returns:
        batch_cuda: `batch` moved to a cuda device, if supported.
    """
    for f in dataclasses.fields(obj):
        setattr(obj, f.name, try_to_cuda(getattr(obj, f.name)))
    return obj