Spaces:
Running
on
L40S
Running
on
L40S
File size: 22,098 Bytes
c705408 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import random
import torch
import signal
import socket
import sys
import json
import numpy as np
import argparse
import logging
from pathlib import Path
from tqdm import tqdm
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.cuda.amp import GradScaler
from torch.utils.tensorboard import SummaryWriter
from pytorch_lightning.lite import LightningLite
from cotracker.models.evaluation_predictor import EvaluationPredictor
from cotracker.models.core.cotracker.cotracker import CoTracker2
from cotracker.utils.visualizer import Visualizer
from cotracker.datasets.tap_vid_datasets import TapVidDataset
from cotracker.datasets.dr_dataset import DynamicReplicaDataset
from cotracker.evaluation.core.evaluator import Evaluator
from cotracker.datasets import kubric_movif_dataset
from cotracker.datasets.utils import collate_fn, collate_fn_train, dataclass_to_cuda_
from cotracker.models.core.cotracker.losses import sequence_loss, balanced_ce_loss
# define the handler function
# for training on a slurm cluster
def sig_handler(signum, frame):
print("caught signal", signum)
print(socket.gethostname(), "USR1 signal caught.")
# do other stuff to cleanup here
print("requeuing job " + os.environ["SLURM_JOB_ID"])
os.system("scontrol requeue " + os.environ["SLURM_JOB_ID"])
sys.exit(-1)
def term_handler(signum, frame):
print("bypassing sigterm", flush=True)
def fetch_optimizer(args, model):
"""Create the optimizer and learning rate scheduler"""
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=1e-8)
scheduler = optim.lr_scheduler.OneCycleLR(
optimizer,
args.lr,
args.num_steps + 100,
pct_start=0.05,
cycle_momentum=False,
anneal_strategy="linear",
)
return optimizer, scheduler
def forward_batch(batch, model, args):
video = batch.video
trajs_g = batch.trajectory
vis_g = batch.visibility
valids = batch.valid
B, T, C, H, W = video.shape
assert C == 3
B, T, N, D = trajs_g.shape
device = video.device
__, first_positive_inds = torch.max(vis_g, dim=1)
# We want to make sure that during training the model sees visible points
# that it does not need to track just yet: they are visible but queried from a later frame
N_rand = N // 4
# inds of visible points in the 1st frame
nonzero_inds = [[torch.nonzero(vis_g[b, :, i]) for i in range(N)] for b in range(B)]
for b in range(B):
rand_vis_inds = torch.cat(
[
nonzero_row[torch.randint(len(nonzero_row), size=(1,))]
for nonzero_row in nonzero_inds[b]
],
dim=1,
)
first_positive_inds[b] = torch.cat(
[rand_vis_inds[:, :N_rand], first_positive_inds[b : b + 1, N_rand:]], dim=1
)
ind_array_ = torch.arange(T, device=device)
ind_array_ = ind_array_[None, :, None].repeat(B, 1, N)
assert torch.allclose(
vis_g[ind_array_ == first_positive_inds[:, None, :]],
torch.ones(1, device=device),
)
gather = torch.gather(trajs_g, 1, first_positive_inds[:, :, None, None].repeat(1, 1, N, D))
xys = torch.diagonal(gather, dim1=1, dim2=2).permute(0, 2, 1)
queries = torch.cat([first_positive_inds[:, :, None], xys[:, :, :2]], dim=2)
predictions, visibility, train_data = model(
video=video, queries=queries, iters=args.train_iters, is_train=True
)
coord_predictions, vis_predictions, valid_mask = train_data
vis_gts = []
traj_gts = []
valids_gts = []
S = args.sliding_window_len
for ind in range(0, args.sequence_len - S // 2, S // 2):
vis_gts.append(vis_g[:, ind : ind + S])
traj_gts.append(trajs_g[:, ind : ind + S])
valids_gts.append(valids[:, ind : ind + S] * valid_mask[:, ind : ind + S])
seq_loss = sequence_loss(coord_predictions, traj_gts, vis_gts, valids_gts, 0.8)
vis_loss = balanced_ce_loss(vis_predictions, vis_gts, valids_gts)
output = {"flow": {"predictions": predictions[0].detach()}}
output["flow"]["loss"] = seq_loss.mean()
output["visibility"] = {
"loss": vis_loss.mean() * 10.0,
"predictions": visibility[0].detach(),
}
return output
def run_test_eval(evaluator, model, dataloaders, writer, step):
model.eval()
for ds_name, dataloader in dataloaders:
visualize_every = 1
grid_size = 5
if ds_name == "dynamic_replica":
visualize_every = 8
grid_size = 0
elif "tapvid" in ds_name:
visualize_every = 5
predictor = EvaluationPredictor(
model.module.module,
grid_size=grid_size,
local_grid_size=0,
single_point=False,
n_iters=6,
)
if torch.cuda.is_available():
predictor.model = predictor.model.cuda()
metrics = evaluator.evaluate_sequence(
model=predictor,
test_dataloader=dataloader,
dataset_name=ds_name,
train_mode=True,
writer=writer,
step=step,
visualize_every=visualize_every,
)
if ds_name == "dynamic_replica" or ds_name == "kubric":
metrics = {f"{ds_name}_avg_{k}": v for k, v in metrics["avg"].items()}
if "tapvid" in ds_name:
metrics = {
f"{ds_name}_avg_OA": metrics["avg"]["occlusion_accuracy"],
f"{ds_name}_avg_delta": metrics["avg"]["average_pts_within_thresh"],
f"{ds_name}_avg_Jaccard": metrics["avg"]["average_jaccard"],
}
writer.add_scalars(f"Eval_{ds_name}", metrics, step)
class Logger:
SUM_FREQ = 100
def __init__(self, model, scheduler):
self.model = model
self.scheduler = scheduler
self.total_steps = 0
self.running_loss = {}
self.writer = SummaryWriter(log_dir=os.path.join(args.ckpt_path, "runs"))
def _print_training_status(self):
metrics_data = [
self.running_loss[k] / Logger.SUM_FREQ for k in sorted(self.running_loss.keys())
]
training_str = "[{:6d}] ".format(self.total_steps + 1)
metrics_str = ("{:10.4f}, " * len(metrics_data)).format(*metrics_data)
# print the training status
logging.info(f"Training Metrics ({self.total_steps}): {training_str + metrics_str}")
if self.writer is None:
self.writer = SummaryWriter(log_dir=os.path.join(args.ckpt_path, "runs"))
for k in self.running_loss:
self.writer.add_scalar(k, self.running_loss[k] / Logger.SUM_FREQ, self.total_steps)
self.running_loss[k] = 0.0
def push(self, metrics, task):
self.total_steps += 1
for key in metrics:
task_key = str(key) + "_" + task
if task_key not in self.running_loss:
self.running_loss[task_key] = 0.0
self.running_loss[task_key] += metrics[key]
if self.total_steps % Logger.SUM_FREQ == Logger.SUM_FREQ - 1:
self._print_training_status()
self.running_loss = {}
def write_dict(self, results):
if self.writer is None:
self.writer = SummaryWriter(log_dir=os.path.join(args.ckpt_path, "runs"))
for key in results:
self.writer.add_scalar(key, results[key], self.total_steps)
def close(self):
self.writer.close()
class Lite(LightningLite):
def run(self, args):
def seed_everything(seed: int):
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
seed_everything(0)
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
g = torch.Generator()
g.manual_seed(0)
if self.global_rank == 0:
eval_dataloaders = []
if "dynamic_replica" in args.eval_datasets:
eval_dataset = DynamicReplicaDataset(
sample_len=60, only_first_n_samples=1, rgbd_input=False
)
eval_dataloader_dr = torch.utils.data.DataLoader(
eval_dataset,
batch_size=1,
shuffle=False,
num_workers=1,
collate_fn=collate_fn,
)
eval_dataloaders.append(("dynamic_replica", eval_dataloader_dr))
if "tapvid_davis_first" in args.eval_datasets:
data_root = os.path.join(args.dataset_root, "tapvid/tapvid_davis/tapvid_davis.pkl")
eval_dataset = TapVidDataset(dataset_type="davis", data_root=data_root)
eval_dataloader_tapvid_davis = torch.utils.data.DataLoader(
eval_dataset,
batch_size=1,
shuffle=False,
num_workers=1,
collate_fn=collate_fn,
)
eval_dataloaders.append(("tapvid_davis", eval_dataloader_tapvid_davis))
evaluator = Evaluator(args.ckpt_path)
visualizer = Visualizer(
save_dir=args.ckpt_path,
pad_value=80,
fps=1,
show_first_frame=0,
tracks_leave_trace=0,
)
if args.model_name == "cotracker":
model = CoTracker2(
stride=args.model_stride,
window_len=args.sliding_window_len,
add_space_attn=not args.remove_space_attn,
num_virtual_tracks=args.num_virtual_tracks,
model_resolution=args.crop_size,
)
else:
raise ValueError(f"Model {args.model_name} doesn't exist")
with open(args.ckpt_path + "/meta.json", "w") as file:
json.dump(vars(args), file, sort_keys=True, indent=4)
model.cuda()
train_dataset = kubric_movif_dataset.KubricMovifDataset(
data_root=os.path.join(args.dataset_root, "kubric", "kubric_movi_f_tracks"),
crop_size=args.crop_size,
seq_len=args.sequence_len,
traj_per_sample=args.traj_per_sample,
sample_vis_1st_frame=args.sample_vis_1st_frame,
use_augs=not args.dont_use_augs,
)
train_loader = DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
worker_init_fn=seed_worker,
generator=g,
pin_memory=True,
collate_fn=collate_fn_train,
drop_last=True,
)
train_loader = self.setup_dataloaders(train_loader, move_to_device=False)
print("LEN TRAIN LOADER", len(train_loader))
optimizer, scheduler = fetch_optimizer(args, model)
total_steps = 0
if self.global_rank == 0:
logger = Logger(model, scheduler)
folder_ckpts = [
f
for f in os.listdir(args.ckpt_path)
if not os.path.isdir(f) and f.endswith(".pth") and not "final" in f
]
if len(folder_ckpts) > 0:
ckpt_path = sorted(folder_ckpts)[-1]
ckpt = self.load(os.path.join(args.ckpt_path, ckpt_path))
logging.info(f"Loading checkpoint {ckpt_path}")
if "model" in ckpt:
model.load_state_dict(ckpt["model"])
else:
model.load_state_dict(ckpt)
if "optimizer" in ckpt:
logging.info("Load optimizer")
optimizer.load_state_dict(ckpt["optimizer"])
if "scheduler" in ckpt:
logging.info("Load scheduler")
scheduler.load_state_dict(ckpt["scheduler"])
if "total_steps" in ckpt:
total_steps = ckpt["total_steps"]
logging.info(f"Load total_steps {total_steps}")
elif args.restore_ckpt is not None:
assert args.restore_ckpt.endswith(".pth") or args.restore_ckpt.endswith(".pt")
logging.info("Loading checkpoint...")
strict = True
state_dict = self.load(args.restore_ckpt)
if "model" in state_dict:
state_dict = state_dict["model"]
if list(state_dict.keys())[0].startswith("module."):
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
model.load_state_dict(state_dict, strict=strict)
logging.info(f"Done loading checkpoint")
model, optimizer = self.setup(model, optimizer, move_to_device=False)
# model.cuda()
model.train()
save_freq = args.save_freq
scaler = GradScaler(enabled=args.mixed_precision)
should_keep_training = True
global_batch_num = 0
epoch = -1
while should_keep_training:
epoch += 1
for i_batch, batch in enumerate(tqdm(train_loader)):
batch, gotit = batch
if not all(gotit):
print("batch is None")
continue
dataclass_to_cuda_(batch)
optimizer.zero_grad()
assert model.training
output = forward_batch(batch, model, args)
loss = 0
for k, v in output.items():
if "loss" in v:
loss += v["loss"]
if self.global_rank == 0:
for k, v in output.items():
if "loss" in v:
logger.writer.add_scalar(
f"live_{k}_loss", v["loss"].item(), total_steps
)
if "metrics" in v:
logger.push(v["metrics"], k)
if total_steps % save_freq == save_freq - 1:
visualizer.visualize(
video=batch.video.clone(),
tracks=batch.trajectory.clone(),
filename="train_gt_traj",
writer=logger.writer,
step=total_steps,
)
visualizer.visualize(
video=batch.video.clone(),
tracks=output["flow"]["predictions"][None],
filename="train_pred_traj",
writer=logger.writer,
step=total_steps,
)
if len(output) > 1:
logger.writer.add_scalar(f"live_total_loss", loss.item(), total_steps)
logger.writer.add_scalar(
f"learning_rate", optimizer.param_groups[0]["lr"], total_steps
)
global_batch_num += 1
self.barrier()
self.backward(scaler.scale(loss))
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), 10.0)
scaler.step(optimizer)
scheduler.step()
scaler.update()
total_steps += 1
if self.global_rank == 0:
if (i_batch >= len(train_loader) - 1) or (
total_steps == 1 and args.validate_at_start
):
if (epoch + 1) % args.save_every_n_epoch == 0:
ckpt_iter = "0" * (6 - len(str(total_steps))) + str(total_steps)
save_path = Path(
f"{args.ckpt_path}/model_{args.model_name}_{ckpt_iter}.pth"
)
save_dict = {
"model": model.module.module.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"total_steps": total_steps,
}
logging.info(f"Saving file {save_path}")
self.save(save_dict, save_path)
if (epoch + 1) % args.evaluate_every_n_epoch == 0 or (
args.validate_at_start and epoch == 0
):
run_test_eval(
evaluator,
model,
eval_dataloaders,
logger.writer,
total_steps,
)
model.train()
torch.cuda.empty_cache()
self.barrier()
if total_steps > args.num_steps:
should_keep_training = False
break
if self.global_rank == 0:
print("FINISHED TRAINING")
PATH = f"{args.ckpt_path}/{args.model_name}_final.pth"
torch.save(model.module.module.state_dict(), PATH)
run_test_eval(evaluator, model, eval_dataloaders, logger.writer, total_steps)
logger.close()
if __name__ == "__main__":
signal.signal(signal.SIGUSR1, sig_handler)
signal.signal(signal.SIGTERM, term_handler)
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", default="cotracker", help="model name")
parser.add_argument("--restore_ckpt", help="path to restore a checkpoint")
parser.add_argument("--ckpt_path", help="path to save checkpoints")
parser.add_argument(
"--batch_size", type=int, default=4, help="batch size used during training."
)
parser.add_argument("--num_nodes", type=int, default=1)
parser.add_argument("--num_workers", type=int, default=10, help="number of dataloader workers")
parser.add_argument("--mixed_precision", action="store_true", help="use mixed precision")
parser.add_argument("--lr", type=float, default=0.0005, help="max learning rate.")
parser.add_argument("--wdecay", type=float, default=0.00001, help="Weight decay in optimizer.")
parser.add_argument(
"--num_steps", type=int, default=200000, help="length of training schedule."
)
parser.add_argument(
"--evaluate_every_n_epoch",
type=int,
default=1,
help="evaluate during training after every n epochs, after every epoch by default",
)
parser.add_argument(
"--save_every_n_epoch",
type=int,
default=1,
help="save checkpoints during training after every n epochs, after every epoch by default",
)
parser.add_argument(
"--validate_at_start",
action="store_true",
help="whether to run evaluation before training starts",
)
parser.add_argument(
"--save_freq",
type=int,
default=100,
help="frequency of trajectory visualization during training",
)
parser.add_argument(
"--traj_per_sample",
type=int,
default=768,
help="the number of trajectories to sample for training",
)
parser.add_argument(
"--dataset_root", type=str, help="path lo all the datasets (train and eval)"
)
parser.add_argument(
"--train_iters",
type=int,
default=4,
help="number of updates to the disparity field in each forward pass.",
)
parser.add_argument("--sequence_len", type=int, default=8, help="train sequence length")
parser.add_argument(
"--eval_datasets",
nargs="+",
default=["tapvid_davis_first"],
help="what datasets to use for evaluation",
)
parser.add_argument(
"--remove_space_attn",
action="store_true",
help="remove space attention from CoTracker",
)
parser.add_argument(
"--num_virtual_tracks",
type=int,
default=None,
help="stride of the CoTracker feature network",
)
parser.add_argument(
"--dont_use_augs",
action="store_true",
help="don't apply augmentations during training",
)
parser.add_argument(
"--sample_vis_1st_frame",
action="store_true",
help="only sample trajectories with points visible on the first frame",
)
parser.add_argument(
"--sliding_window_len",
type=int,
default=8,
help="length of the CoTracker sliding window",
)
parser.add_argument(
"--model_stride",
type=int,
default=8,
help="stride of the CoTracker feature network",
)
parser.add_argument(
"--crop_size",
type=int,
nargs="+",
default=[384, 512],
help="crop videos to this resolution during training",
)
parser.add_argument(
"--eval_max_seq_len",
type=int,
default=1000,
help="maximum length of evaluation videos",
)
args = parser.parse_args()
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
)
Path(args.ckpt_path).mkdir(exist_ok=True, parents=True)
from pytorch_lightning.strategies import DDPStrategy
Lite(
strategy=DDPStrategy(find_unused_parameters=False),
devices="auto",
accelerator="gpu",
precision=32,
num_nodes=args.num_nodes,
).run(args)
|