File size: 22,098 Bytes
c705408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import os
import random
import torch
import signal
import socket
import sys
import json

import numpy as np
import argparse
import logging
from pathlib import Path
from tqdm import tqdm
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.cuda.amp import GradScaler

from torch.utils.tensorboard import SummaryWriter
from pytorch_lightning.lite import LightningLite

from cotracker.models.evaluation_predictor import EvaluationPredictor
from cotracker.models.core.cotracker.cotracker import CoTracker2
from cotracker.utils.visualizer import Visualizer
from cotracker.datasets.tap_vid_datasets import TapVidDataset

from cotracker.datasets.dr_dataset import DynamicReplicaDataset
from cotracker.evaluation.core.evaluator import Evaluator
from cotracker.datasets import kubric_movif_dataset
from cotracker.datasets.utils import collate_fn, collate_fn_train, dataclass_to_cuda_
from cotracker.models.core.cotracker.losses import sequence_loss, balanced_ce_loss


# define the handler function
# for training on a slurm cluster
def sig_handler(signum, frame):
    print("caught signal", signum)
    print(socket.gethostname(), "USR1 signal caught.")
    # do other stuff to cleanup here
    print("requeuing job " + os.environ["SLURM_JOB_ID"])
    os.system("scontrol requeue " + os.environ["SLURM_JOB_ID"])
    sys.exit(-1)


def term_handler(signum, frame):
    print("bypassing sigterm", flush=True)


def fetch_optimizer(args, model):
    """Create the optimizer and learning rate scheduler"""
    optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=1e-8)
    scheduler = optim.lr_scheduler.OneCycleLR(
        optimizer,
        args.lr,
        args.num_steps + 100,
        pct_start=0.05,
        cycle_momentum=False,
        anneal_strategy="linear",
    )

    return optimizer, scheduler


def forward_batch(batch, model, args):
    video = batch.video
    trajs_g = batch.trajectory
    vis_g = batch.visibility
    valids = batch.valid
    B, T, C, H, W = video.shape
    assert C == 3
    B, T, N, D = trajs_g.shape
    device = video.device

    __, first_positive_inds = torch.max(vis_g, dim=1)
    # We want to make sure that during training the model sees visible points
    # that it does not need to track just yet: they are visible but queried from a later frame
    N_rand = N // 4
    # inds of visible points in the 1st frame
    nonzero_inds = [[torch.nonzero(vis_g[b, :, i]) for i in range(N)] for b in range(B)]

    for b in range(B):
        rand_vis_inds = torch.cat(
            [
                nonzero_row[torch.randint(len(nonzero_row), size=(1,))]
                for nonzero_row in nonzero_inds[b]
            ],
            dim=1,
        )
        first_positive_inds[b] = torch.cat(
            [rand_vis_inds[:, :N_rand], first_positive_inds[b : b + 1, N_rand:]], dim=1
        )

    ind_array_ = torch.arange(T, device=device)
    ind_array_ = ind_array_[None, :, None].repeat(B, 1, N)
    assert torch.allclose(
        vis_g[ind_array_ == first_positive_inds[:, None, :]],
        torch.ones(1, device=device),
    )
    gather = torch.gather(trajs_g, 1, first_positive_inds[:, :, None, None].repeat(1, 1, N, D))
    xys = torch.diagonal(gather, dim1=1, dim2=2).permute(0, 2, 1)

    queries = torch.cat([first_positive_inds[:, :, None], xys[:, :, :2]], dim=2)

    predictions, visibility, train_data = model(
        video=video, queries=queries, iters=args.train_iters, is_train=True
    )
    coord_predictions, vis_predictions, valid_mask = train_data

    vis_gts = []
    traj_gts = []
    valids_gts = []

    S = args.sliding_window_len
    for ind in range(0, args.sequence_len - S // 2, S // 2):
        vis_gts.append(vis_g[:, ind : ind + S])
        traj_gts.append(trajs_g[:, ind : ind + S])
        valids_gts.append(valids[:, ind : ind + S] * valid_mask[:, ind : ind + S])
        
    seq_loss = sequence_loss(coord_predictions, traj_gts, vis_gts, valids_gts, 0.8)
    vis_loss = balanced_ce_loss(vis_predictions, vis_gts, valids_gts)

    output = {"flow": {"predictions": predictions[0].detach()}}
    output["flow"]["loss"] = seq_loss.mean()
    output["visibility"] = {
        "loss": vis_loss.mean() * 10.0,
        "predictions": visibility[0].detach(),
    }
    return output


def run_test_eval(evaluator, model, dataloaders, writer, step):
    model.eval()
    for ds_name, dataloader in dataloaders:
        visualize_every = 1
        grid_size = 5
        if ds_name == "dynamic_replica":
            visualize_every = 8
            grid_size = 0
        elif "tapvid" in ds_name:
            visualize_every = 5

        predictor = EvaluationPredictor(
            model.module.module,
            grid_size=grid_size,
            local_grid_size=0,
            single_point=False,
            n_iters=6,
        )
        if torch.cuda.is_available():
            predictor.model = predictor.model.cuda()

        metrics = evaluator.evaluate_sequence(
            model=predictor,
            test_dataloader=dataloader,
            dataset_name=ds_name,
            train_mode=True,
            writer=writer,
            step=step,
            visualize_every=visualize_every,
        )

        if ds_name == "dynamic_replica" or ds_name == "kubric":
            metrics = {f"{ds_name}_avg_{k}": v for k, v in metrics["avg"].items()}

        if "tapvid" in ds_name:
            metrics = {
                f"{ds_name}_avg_OA": metrics["avg"]["occlusion_accuracy"],
                f"{ds_name}_avg_delta": metrics["avg"]["average_pts_within_thresh"],
                f"{ds_name}_avg_Jaccard": metrics["avg"]["average_jaccard"],
            }

        writer.add_scalars(f"Eval_{ds_name}", metrics, step)


class Logger:
    SUM_FREQ = 100

    def __init__(self, model, scheduler):
        self.model = model
        self.scheduler = scheduler
        self.total_steps = 0
        self.running_loss = {}
        self.writer = SummaryWriter(log_dir=os.path.join(args.ckpt_path, "runs"))

    def _print_training_status(self):
        metrics_data = [
            self.running_loss[k] / Logger.SUM_FREQ for k in sorted(self.running_loss.keys())
        ]
        training_str = "[{:6d}] ".format(self.total_steps + 1)
        metrics_str = ("{:10.4f}, " * len(metrics_data)).format(*metrics_data)

        # print the training status
        logging.info(f"Training Metrics ({self.total_steps}): {training_str + metrics_str}")

        if self.writer is None:
            self.writer = SummaryWriter(log_dir=os.path.join(args.ckpt_path, "runs"))

        for k in self.running_loss:
            self.writer.add_scalar(k, self.running_loss[k] / Logger.SUM_FREQ, self.total_steps)
            self.running_loss[k] = 0.0

    def push(self, metrics, task):
        self.total_steps += 1

        for key in metrics:
            task_key = str(key) + "_" + task
            if task_key not in self.running_loss:
                self.running_loss[task_key] = 0.0

            self.running_loss[task_key] += metrics[key]

        if self.total_steps % Logger.SUM_FREQ == Logger.SUM_FREQ - 1:
            self._print_training_status()
            self.running_loss = {}

    def write_dict(self, results):
        if self.writer is None:
            self.writer = SummaryWriter(log_dir=os.path.join(args.ckpt_path, "runs"))

        for key in results:
            self.writer.add_scalar(key, results[key], self.total_steps)

    def close(self):
        self.writer.close()


class Lite(LightningLite):
    def run(self, args):
        def seed_everything(seed: int):
            random.seed(seed)
            os.environ["PYTHONHASHSEED"] = str(seed)
            np.random.seed(seed)
            torch.manual_seed(seed)
            torch.cuda.manual_seed(seed)
            torch.backends.cudnn.deterministic = True
            torch.backends.cudnn.benchmark = False

        seed_everything(0)

        def seed_worker(worker_id):
            worker_seed = torch.initial_seed() % 2**32
            np.random.seed(worker_seed)
            random.seed(worker_seed)

        g = torch.Generator()
        g.manual_seed(0)
        if self.global_rank == 0:
            eval_dataloaders = []
            if "dynamic_replica" in args.eval_datasets:
                eval_dataset = DynamicReplicaDataset(
                    sample_len=60, only_first_n_samples=1, rgbd_input=False
                )
                eval_dataloader_dr = torch.utils.data.DataLoader(
                    eval_dataset,
                    batch_size=1,
                    shuffle=False,
                    num_workers=1,
                    collate_fn=collate_fn,
                )
                eval_dataloaders.append(("dynamic_replica", eval_dataloader_dr))

            if "tapvid_davis_first" in args.eval_datasets:
                data_root = os.path.join(args.dataset_root, "tapvid/tapvid_davis/tapvid_davis.pkl")
                eval_dataset = TapVidDataset(dataset_type="davis", data_root=data_root)
                eval_dataloader_tapvid_davis = torch.utils.data.DataLoader(
                    eval_dataset,
                    batch_size=1,
                    shuffle=False,
                    num_workers=1,
                    collate_fn=collate_fn,
                )
                eval_dataloaders.append(("tapvid_davis", eval_dataloader_tapvid_davis))

            evaluator = Evaluator(args.ckpt_path)

            visualizer = Visualizer(
                save_dir=args.ckpt_path,
                pad_value=80,
                fps=1,
                show_first_frame=0,
                tracks_leave_trace=0,
            )

        if args.model_name == "cotracker":
            model = CoTracker2(
                stride=args.model_stride,
                window_len=args.sliding_window_len,
                add_space_attn=not args.remove_space_attn,
                num_virtual_tracks=args.num_virtual_tracks,
                model_resolution=args.crop_size,
            )
        else:
            raise ValueError(f"Model {args.model_name} doesn't exist")

        with open(args.ckpt_path + "/meta.json", "w") as file:
            json.dump(vars(args), file, sort_keys=True, indent=4)

        model.cuda()

        train_dataset = kubric_movif_dataset.KubricMovifDataset(
            data_root=os.path.join(args.dataset_root, "kubric", "kubric_movi_f_tracks"),
            crop_size=args.crop_size,
            seq_len=args.sequence_len,
            traj_per_sample=args.traj_per_sample,
            sample_vis_1st_frame=args.sample_vis_1st_frame,
            use_augs=not args.dont_use_augs,
        )

        train_loader = DataLoader(
            train_dataset,
            batch_size=args.batch_size,
            shuffle=True,
            num_workers=args.num_workers,
            worker_init_fn=seed_worker,
            generator=g,
            pin_memory=True,
            collate_fn=collate_fn_train,
            drop_last=True,
        )

        train_loader = self.setup_dataloaders(train_loader, move_to_device=False)
        print("LEN TRAIN LOADER", len(train_loader))
        optimizer, scheduler = fetch_optimizer(args, model)

        total_steps = 0
        if self.global_rank == 0:
            logger = Logger(model, scheduler)

        folder_ckpts = [
            f
            for f in os.listdir(args.ckpt_path)
            if not os.path.isdir(f) and f.endswith(".pth") and not "final" in f
        ]
        if len(folder_ckpts) > 0:
            ckpt_path = sorted(folder_ckpts)[-1]
            ckpt = self.load(os.path.join(args.ckpt_path, ckpt_path))
            logging.info(f"Loading checkpoint {ckpt_path}")
            if "model" in ckpt:
                model.load_state_dict(ckpt["model"])
            else:
                model.load_state_dict(ckpt)
            if "optimizer" in ckpt:
                logging.info("Load optimizer")
                optimizer.load_state_dict(ckpt["optimizer"])
            if "scheduler" in ckpt:
                logging.info("Load scheduler")
                scheduler.load_state_dict(ckpt["scheduler"])
            if "total_steps" in ckpt:
                total_steps = ckpt["total_steps"]
                logging.info(f"Load total_steps {total_steps}")

        elif args.restore_ckpt is not None:
            assert args.restore_ckpt.endswith(".pth") or args.restore_ckpt.endswith(".pt")
            logging.info("Loading checkpoint...")

            strict = True
            state_dict = self.load(args.restore_ckpt)
            if "model" in state_dict:
                state_dict = state_dict["model"]

            if list(state_dict.keys())[0].startswith("module."):
                state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
            model.load_state_dict(state_dict, strict=strict)

            logging.info(f"Done loading checkpoint")
        model, optimizer = self.setup(model, optimizer, move_to_device=False)
        # model.cuda()
        model.train()

        save_freq = args.save_freq
        scaler = GradScaler(enabled=args.mixed_precision)

        should_keep_training = True
        global_batch_num = 0
        epoch = -1

        while should_keep_training:
            epoch += 1
            for i_batch, batch in enumerate(tqdm(train_loader)):
                batch, gotit = batch
                if not all(gotit):
                    print("batch is None")
                    continue
                dataclass_to_cuda_(batch)

                optimizer.zero_grad()

                assert model.training

                output = forward_batch(batch, model, args)

                loss = 0
                for k, v in output.items():
                    if "loss" in v:
                        loss += v["loss"]

                if self.global_rank == 0:
                    for k, v in output.items():
                        if "loss" in v:
                            logger.writer.add_scalar(
                                f"live_{k}_loss", v["loss"].item(), total_steps
                            )
                        if "metrics" in v:
                            logger.push(v["metrics"], k)
                    if total_steps % save_freq == save_freq - 1:
                        visualizer.visualize(
                            video=batch.video.clone(),
                            tracks=batch.trajectory.clone(),
                            filename="train_gt_traj",
                            writer=logger.writer,
                            step=total_steps,
                        )

                        visualizer.visualize(
                            video=batch.video.clone(),
                            tracks=output["flow"]["predictions"][None],
                            filename="train_pred_traj",
                            writer=logger.writer,
                            step=total_steps,
                        )

                    if len(output) > 1:
                        logger.writer.add_scalar(f"live_total_loss", loss.item(), total_steps)
                    logger.writer.add_scalar(
                        f"learning_rate", optimizer.param_groups[0]["lr"], total_steps
                    )
                    global_batch_num += 1

                self.barrier()

                self.backward(scaler.scale(loss))

                scaler.unscale_(optimizer)
                torch.nn.utils.clip_grad_norm_(model.parameters(), 10.0)

                scaler.step(optimizer)
                scheduler.step()
                scaler.update()
                total_steps += 1
                if self.global_rank == 0:
                    if (i_batch >= len(train_loader) - 1) or (
                        total_steps == 1 and args.validate_at_start
                    ):
                        if (epoch + 1) % args.save_every_n_epoch == 0:
                            ckpt_iter = "0" * (6 - len(str(total_steps))) + str(total_steps)
                            save_path = Path(
                                f"{args.ckpt_path}/model_{args.model_name}_{ckpt_iter}.pth"
                            )

                            save_dict = {
                                "model": model.module.module.state_dict(),
                                "optimizer": optimizer.state_dict(),
                                "scheduler": scheduler.state_dict(),
                                "total_steps": total_steps,
                            }

                            logging.info(f"Saving file {save_path}")
                            self.save(save_dict, save_path)

                        if (epoch + 1) % args.evaluate_every_n_epoch == 0 or (
                            args.validate_at_start and epoch == 0
                        ):
                            run_test_eval(
                                evaluator,
                                model,
                                eval_dataloaders,
                                logger.writer,
                                total_steps,
                            )
                            model.train()
                            torch.cuda.empty_cache()

                self.barrier()
                if total_steps > args.num_steps:
                    should_keep_training = False
                    break
        if self.global_rank == 0:
            print("FINISHED TRAINING")

            PATH = f"{args.ckpt_path}/{args.model_name}_final.pth"
            torch.save(model.module.module.state_dict(), PATH)
            run_test_eval(evaluator, model, eval_dataloaders, logger.writer, total_steps)
            logger.close()


if __name__ == "__main__":
    signal.signal(signal.SIGUSR1, sig_handler)
    signal.signal(signal.SIGTERM, term_handler)
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_name", default="cotracker", help="model name")
    parser.add_argument("--restore_ckpt", help="path to restore a checkpoint")
    parser.add_argument("--ckpt_path", help="path to save checkpoints")
    parser.add_argument(
        "--batch_size", type=int, default=4, help="batch size used during training."
    )
    parser.add_argument("--num_nodes", type=int, default=1)
    parser.add_argument("--num_workers", type=int, default=10, help="number of dataloader workers")

    parser.add_argument("--mixed_precision", action="store_true", help="use mixed precision")
    parser.add_argument("--lr", type=float, default=0.0005, help="max learning rate.")
    parser.add_argument("--wdecay", type=float, default=0.00001, help="Weight decay in optimizer.")
    parser.add_argument(
        "--num_steps", type=int, default=200000, help="length of training schedule."
    )
    parser.add_argument(
        "--evaluate_every_n_epoch",
        type=int,
        default=1,
        help="evaluate during training after every n epochs, after every epoch by default",
    )
    parser.add_argument(
        "--save_every_n_epoch",
        type=int,
        default=1,
        help="save checkpoints during training after every n epochs, after every epoch by default",
    )
    parser.add_argument(
        "--validate_at_start",
        action="store_true",
        help="whether to run evaluation before training starts",
    )
    parser.add_argument(
        "--save_freq",
        type=int,
        default=100,
        help="frequency of trajectory visualization during training",
    )
    parser.add_argument(
        "--traj_per_sample",
        type=int,
        default=768,
        help="the number of trajectories to sample for training",
    )
    parser.add_argument(
        "--dataset_root", type=str, help="path lo all the datasets (train and eval)"
    )

    parser.add_argument(
        "--train_iters",
        type=int,
        default=4,
        help="number of updates to the disparity field in each forward pass.",
    )
    parser.add_argument("--sequence_len", type=int, default=8, help="train sequence length")
    parser.add_argument(
        "--eval_datasets",
        nargs="+",
        default=["tapvid_davis_first"],
        help="what datasets to use for evaluation",
    )

    parser.add_argument(
        "--remove_space_attn",
        action="store_true",
        help="remove space attention from CoTracker",
    )
    parser.add_argument(
        "--num_virtual_tracks",
        type=int,
        default=None,
        help="stride of the CoTracker feature network",
    )
    parser.add_argument(
        "--dont_use_augs",
        action="store_true",
        help="don't apply augmentations during training",
    )
    parser.add_argument(
        "--sample_vis_1st_frame",
        action="store_true",
        help="only sample trajectories with points visible on the first frame",
    )
    parser.add_argument(
        "--sliding_window_len",
        type=int,
        default=8,
        help="length of the CoTracker sliding window",
    )
    parser.add_argument(
        "--model_stride",
        type=int,
        default=8,
        help="stride of the CoTracker feature network",
    )
    parser.add_argument(
        "--crop_size",
        type=int,
        nargs="+",
        default=[384, 512],
        help="crop videos to this resolution during training",
    )
    parser.add_argument(
        "--eval_max_seq_len",
        type=int,
        default=1000,
        help="maximum length of evaluation videos",
    )
    args = parser.parse_args()
    logging.basicConfig(
        level=logging.INFO,
        format="%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
    )

    Path(args.ckpt_path).mkdir(exist_ok=True, parents=True)
    from pytorch_lightning.strategies import DDPStrategy

    Lite(
        strategy=DDPStrategy(find_unused_parameters=False),
        devices="auto",
        accelerator="gpu",
        precision=32,
        num_nodes=args.num_nodes,
    ).run(args)