Spaces:
Sleeping
Sleeping
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import Tuple, Union | |
import torch | |
def get_2d_sincos_pos_embed( | |
embed_dim: int, grid_size: Union[int, Tuple[int, int]] | |
) -> torch.Tensor: | |
""" | |
This function initializes a grid and generates a 2D positional embedding using sine and cosine functions. | |
It is a wrapper of get_2d_sincos_pos_embed_from_grid. | |
Args: | |
- embed_dim: The embedding dimension. | |
- grid_size: The grid size. | |
Returns: | |
- pos_embed: The generated 2D positional embedding. | |
""" | |
if isinstance(grid_size, tuple): | |
grid_size_h, grid_size_w = grid_size | |
else: | |
grid_size_h = grid_size_w = grid_size | |
grid_h = torch.arange(grid_size_h, dtype=torch.float) | |
grid_w = torch.arange(grid_size_w, dtype=torch.float) | |
grid = torch.meshgrid(grid_w, grid_h, indexing="xy") | |
grid = torch.stack(grid, dim=0) | |
grid = grid.reshape([2, 1, grid_size_h, grid_size_w]) | |
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | |
return pos_embed.reshape(1, grid_size_h, grid_size_w, -1).permute(0, 3, 1, 2) | |
def get_2d_sincos_pos_embed_from_grid( | |
embed_dim: int, grid: torch.Tensor | |
) -> torch.Tensor: | |
""" | |
This function generates a 2D positional embedding from a given grid using sine and cosine functions. | |
Args: | |
- embed_dim: The embedding dimension. | |
- grid: The grid to generate the embedding from. | |
Returns: | |
- emb: The generated 2D positional embedding. | |
""" | |
assert embed_dim % 2 == 0 | |
# use half of dimensions to encode grid_h | |
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) | |
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) | |
emb = torch.cat([emb_h, emb_w], dim=2) # (H*W, D) | |
return emb | |
def get_1d_sincos_pos_embed_from_grid( | |
embed_dim: int, pos: torch.Tensor | |
) -> torch.Tensor: | |
""" | |
This function generates a 1D positional embedding from a given grid using sine and cosine functions. | |
Args: | |
- embed_dim: The embedding dimension. | |
- pos: The position to generate the embedding from. | |
Returns: | |
- emb: The generated 1D positional embedding. | |
""" | |
assert embed_dim % 2 == 0 | |
omega = torch.arange(embed_dim // 2, dtype=torch.double) | |
omega /= embed_dim / 2.0 | |
omega = 1.0 / 10000**omega # (D/2,) | |
pos = pos.reshape(-1) # (M,) | |
out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product | |
emb_sin = torch.sin(out) # (M, D/2) | |
emb_cos = torch.cos(out) # (M, D/2) | |
emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D) | |
return emb[None].float() | |
def get_2d_embedding(xy: torch.Tensor, C: int, cat_coords: bool = True) -> torch.Tensor: | |
""" | |
This function generates a 2D positional embedding from given coordinates using sine and cosine functions. | |
Args: | |
- xy: The coordinates to generate the embedding from. | |
- C: The size of the embedding. | |
- cat_coords: A flag to indicate whether to concatenate the original coordinates to the embedding. | |
Returns: | |
- pe: The generated 2D positional embedding. | |
""" | |
B, N, D = xy.shape | |
assert D == 2 | |
x = xy[:, :, 0:1] | |
y = xy[:, :, 1:2] | |
div_term = ( | |
torch.arange(0, C, 2, device=xy.device, dtype=torch.float32) * (1000.0 / C) | |
).reshape(1, 1, int(C / 2)) | |
pe_x = torch.zeros(B, N, C, device=xy.device, dtype=torch.float32) | |
pe_y = torch.zeros(B, N, C, device=xy.device, dtype=torch.float32) | |
pe_x[:, :, 0::2] = torch.sin(x * div_term) | |
pe_x[:, :, 1::2] = torch.cos(x * div_term) | |
pe_y[:, :, 0::2] = torch.sin(y * div_term) | |
pe_y[:, :, 1::2] = torch.cos(y * div_term) | |
pe = torch.cat([pe_x, pe_y], dim=2) # (B, N, C*3) | |
if cat_coords: | |
pe = torch.cat([xy, pe], dim=2) # (B, N, C*3+3) | |
return pe | |