Spaces:
Running
on
L40S
Running
on
L40S
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.nn.init as init | |
import logging | |
from diffusers.models.attention import Attention | |
from diffusers.utils import USE_PEFT_BACKEND, is_xformers_available | |
from typing import Optional, Callable | |
from einops import rearrange | |
if is_xformers_available(): | |
import xformers | |
import xformers.ops | |
else: | |
xformers = None | |
logger = logging.getLogger(__name__) | |
class AttnProcessor: | |
r""" | |
Default processor for performing attention-related computations. | |
""" | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
temb: Optional[torch.FloatTensor] = None, | |
scale: float = 1.0, | |
pose_feature=None, # the only difference to the original code | |
) -> torch.Tensor: | |
residual = hidden_states | |
args = () if USE_PEFT_BACKEND else (scale,) | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states, *args) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states, *args) | |
value = attn.to_v(encoder_hidden_states, *args) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states, *args) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class AttnProcessor2_0: | |
r""" | |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
""" | |
def __init__(self): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
temb: Optional[torch.FloatTensor] = None, | |
scale: float = 1.0, | |
pose_feature=None | |
) -> torch.FloatTensor: | |
residual = hidden_states | |
args = () if USE_PEFT_BACKEND else (scale,) | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
args = () if USE_PEFT_BACKEND else (scale,) | |
query = attn.to_q(hidden_states, *args) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states, *args) | |
value = attn.to_v(encoder_hidden_states, *args) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states, *args) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class XFormersAttnProcessor: | |
r""" | |
Processor for implementing memory efficient attention using xFormers. | |
Args: | |
attention_op (`Callable`, *optional*, defaults to `None`): | |
The base | |
[operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to | |
use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best | |
operator. | |
""" | |
def __init__(self, attention_op: Optional[Callable] = None): | |
self.attention_op = attention_op | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
temb: Optional[torch.FloatTensor] = None, | |
scale: float = 1.0, | |
pose_feature=None, # the only difference to the original code | |
) -> torch.FloatTensor: | |
residual = hidden_states | |
args = () if USE_PEFT_BACKEND else (scale,) | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, key_tokens, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size) | |
if attention_mask is not None: | |
# expand our mask's singleton query_tokens dimension: | |
# [batch*heads, 1, key_tokens] -> | |
# [batch*heads, query_tokens, key_tokens] | |
# so that it can be added as a bias onto the attention scores that xformers computes: | |
# [batch*heads, query_tokens, key_tokens] | |
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us. | |
_, query_tokens, _ = hidden_states.shape | |
attention_mask = attention_mask.expand(-1, query_tokens, -1) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states, *args) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states, *args) | |
value = attn.to_v(encoder_hidden_states, *args) | |
query = attn.head_to_batch_dim(query).contiguous() | |
key = attn.head_to_batch_dim(key).contiguous() | |
value = attn.head_to_batch_dim(value).contiguous() | |
hidden_states = xformers.ops.memory_efficient_attention( | |
query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale | |
) | |
hidden_states = hidden_states.to(query.dtype) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states, *args) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class PoseAdaptorAttnProcessor(nn.Module): | |
def __init__( | |
self, | |
hidden_size, # dimension of hidden state | |
pose_feature_dim=None, # dimension of the pose feature | |
cross_attention_dim=None, # dimension of the text embedding | |
query_condition=False, | |
key_value_condition=False, | |
scale=1.0, | |
): | |
super().__init__() | |
self.hidden_size = hidden_size | |
self.pose_feature_dim = pose_feature_dim | |
self.cross_attention_dim = cross_attention_dim | |
self.scale = scale | |
self.query_condition = query_condition | |
self.key_value_condition = key_value_condition | |
assert hidden_size == pose_feature_dim | |
if self.query_condition and self.key_value_condition: | |
self.qkv_merge = nn.Linear(hidden_size, hidden_size) | |
init.zeros_(self.qkv_merge.weight) | |
init.zeros_(self.qkv_merge.bias) | |
elif self.query_condition: | |
self.q_merge = nn.Linear(hidden_size, hidden_size) | |
init.zeros_(self.q_merge.weight) | |
init.zeros_(self.q_merge.bias) | |
else: | |
self.kv_merge = nn.Linear(hidden_size, hidden_size) | |
init.zeros_(self.kv_merge.weight) | |
init.zeros_(self.kv_merge.bias) | |
def forward( | |
self, | |
attn, | |
hidden_states, | |
pose_feature, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
scale=None, | |
): | |
assert pose_feature is not None | |
pose_embedding_scale = (scale or self.scale) | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
assert hidden_states.ndim == 3 and pose_feature.ndim == 3 | |
if self.query_condition and self.key_value_condition: | |
assert encoder_hidden_states is None | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
assert encoder_hidden_states.ndim == 3 | |
batch_size, ehs_sequence_length, _ = encoder_hidden_states.shape | |
attention_mask = attn.prepare_attention_mask(attention_mask, ehs_sequence_length, batch_size) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
if attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
if self.query_condition and self.key_value_condition: # only self attention | |
query_hidden_state = self.qkv_merge(hidden_states + pose_feature) * pose_embedding_scale + hidden_states | |
key_value_hidden_state = query_hidden_state | |
elif self.query_condition: | |
query_hidden_state = self.q_merge(hidden_states + pose_feature) * pose_embedding_scale + hidden_states | |
key_value_hidden_state = encoder_hidden_states | |
else: | |
key_value_hidden_state = self.kv_merge(encoder_hidden_states + pose_feature) * pose_embedding_scale + encoder_hidden_states | |
query_hidden_state = hidden_states | |
# original attention | |
query = attn.to_q(query_hidden_state) | |
key = attn.to_k(key_value_hidden_state) | |
value = attn.to_v(key_value_hidden_state) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class PoseAdaptorAttnProcessor2_0(nn.Module): | |
def __init__( | |
self, | |
hidden_size, # dimension of hidden state | |
pose_feature_dim=None, # dimension of the pose feature | |
cross_attention_dim=None, # dimension of the text embedding | |
query_condition=False, | |
key_value_condition=False, | |
scale=1.0, | |
): | |
super().__init__() | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.hidden_size = hidden_size | |
self.pose_feature_dim = pose_feature_dim | |
self.cross_attention_dim = cross_attention_dim | |
self.scale = scale | |
self.query_condition = query_condition | |
self.key_value_condition = key_value_condition | |
assert hidden_size == pose_feature_dim | |
if self.query_condition and self.key_value_condition: | |
self.qkv_merge = nn.Linear(hidden_size, hidden_size) | |
init.zeros_(self.qkv_merge.weight) | |
init.zeros_(self.qkv_merge.bias) | |
elif self.query_condition: | |
self.q_merge = nn.Linear(hidden_size, hidden_size) | |
init.zeros_(self.q_merge.weight) | |
init.zeros_(self.q_merge.bias) | |
else: | |
self.kv_merge = nn.Linear(hidden_size, hidden_size) | |
init.zeros_(self.kv_merge.weight) | |
init.zeros_(self.kv_merge.bias) | |
def forward( | |
self, | |
attn, | |
hidden_states, | |
pose_feature, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
scale=None, | |
): | |
assert pose_feature is not None | |
pose_embedding_scale = (scale or self.scale) | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
assert hidden_states.ndim == 3 and pose_feature.ndim == 3 | |
if self.query_condition and self.key_value_condition: | |
assert encoder_hidden_states is None | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
assert encoder_hidden_states.ndim == 3 | |
batch_size, ehs_sequence_length, _ = encoder_hidden_states.shape | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, ehs_sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
if attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
if self.query_condition and self.key_value_condition: # only self attention | |
query_hidden_state = self.qkv_merge(hidden_states + pose_feature) * pose_embedding_scale + hidden_states | |
key_value_hidden_state = query_hidden_state | |
elif self.query_condition: | |
query_hidden_state = self.q_merge(hidden_states + pose_feature) * pose_embedding_scale + hidden_states | |
key_value_hidden_state = encoder_hidden_states | |
else: | |
key_value_hidden_state = self.kv_merge(encoder_hidden_states + pose_feature) * pose_embedding_scale + encoder_hidden_states | |
query_hidden_state = hidden_states | |
# original attention | |
query = attn.to_q(query_hidden_state) | |
key = attn.to_k(key_value_hidden_state) | |
value = attn.to_v(key_value_hidden_state) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # [bs, seq_len, nhead, head_dim] -> [bs, nhead, seq_len, head_dim] | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) # [bs, nhead, seq_len, head_dim] | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) # [bs, seq_len, dim] | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class PoseAdaptorXFormersAttnProcessor(nn.Module): | |
def __init__( | |
self, | |
hidden_size, # dimension of hidden state | |
pose_feature_dim=None, # dimension of the pose feature | |
cross_attention_dim=None, # dimension of the text embedding | |
query_condition=False, | |
key_value_condition=False, | |
scale=1.0, | |
attention_op: Optional[Callable] = None, | |
): | |
super().__init__() | |
self.hidden_size = hidden_size | |
self.pose_feature_dim = pose_feature_dim | |
self.cross_attention_dim = cross_attention_dim | |
self.scale = scale | |
self.query_condition = query_condition | |
self.key_value_condition = key_value_condition | |
self.attention_op = attention_op | |
assert hidden_size == pose_feature_dim | |
if self.query_condition and self.key_value_condition: | |
self.qkv_merge = nn.Linear(hidden_size, hidden_size) | |
init.zeros_(self.qkv_merge.weight) | |
init.zeros_(self.qkv_merge.bias) | |
elif self.query_condition: | |
self.q_merge = nn.Linear(hidden_size, hidden_size) | |
init.zeros_(self.q_merge.weight) | |
init.zeros_(self.q_merge.bias) | |
else: | |
self.kv_merge = nn.Linear(hidden_size, hidden_size) | |
init.zeros_(self.kv_merge.weight) | |
init.zeros_(self.kv_merge.bias) | |
def forward( | |
self, | |
attn, | |
hidden_states, | |
pose_feature, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
scale=None, | |
): | |
assert pose_feature is not None | |
pose_embedding_scale = (scale or self.scale) | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
assert hidden_states.ndim == 3 and pose_feature.ndim == 3 | |
if self.query_condition and self.key_value_condition: | |
assert encoder_hidden_states is None | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
assert encoder_hidden_states.ndim == 3 | |
batch_size, ehs_sequence_length, _ = encoder_hidden_states.shape | |
attention_mask = attn.prepare_attention_mask(attention_mask, ehs_sequence_length, batch_size) | |
if attention_mask is not None: | |
# expand our mask's singleton query_tokens dimension: | |
# [batch*heads, 1, key_tokens] -> | |
# [batch*heads, query_tokens, key_tokens] | |
# so that it can be added as a bias onto the attention scores that xformers computes: | |
# [batch*heads, query_tokens, key_tokens] | |
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us. | |
_, query_tokens, _ = hidden_states.shape | |
attention_mask = attention_mask.expand(-1, query_tokens, -1) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
if attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
if self.query_condition and self.key_value_condition: # only self attention | |
query_hidden_state = self.qkv_merge(hidden_states + pose_feature) * pose_embedding_scale + hidden_states | |
key_value_hidden_state = query_hidden_state | |
elif self.query_condition: | |
query_hidden_state = self.q_merge(hidden_states + pose_feature) * pose_embedding_scale + hidden_states | |
key_value_hidden_state = encoder_hidden_states | |
else: | |
key_value_hidden_state = self.kv_merge(encoder_hidden_states + pose_feature) * pose_embedding_scale + encoder_hidden_states | |
query_hidden_state = hidden_states | |
# original attention | |
query = attn.to_q(query_hidden_state) | |
key = attn.to_k(key_value_hidden_state) | |
value = attn.to_v(key_value_hidden_state) | |
query = attn.head_to_batch_dim(query).contiguous() | |
key = attn.head_to_batch_dim(key).contiguous() | |
value = attn.head_to_batch_dim(value).contiguous() | |
hidden_states = xformers.ops.memory_efficient_attention( | |
query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale | |
) | |
hidden_states = hidden_states.to(query.dtype) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |