Spaces:
Running
on
L40S
Running
on
L40S
# BSD 3-Clause License | |
# Copyright (c) 2022, Zhao Xiaoming | |
# All rights reserved. | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions are met: | |
# 1. Redistributions of source code must retain the above copyright notice, this | |
# list of conditions and the following disclaimer. | |
# 2. Redistributions in binary form must reproduce the above copyright notice, | |
# this list of conditions and the following disclaimer in the documentation | |
# and/or other materials provided with the distribution. | |
# 3. Neither the name of the copyright holder nor the names of its | |
# contributors may be used to endorse or promote products derived from | |
# this software without specific prior written permission. | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | |
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | |
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | |
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
# Authors: | |
# Xiaoming Zhao, Xingming Wu, Weihai Chen, Peter C.Y. Chen, Qingsong Xu, and Zhengguo Li | |
# Code from https://github.com/Shiaoming/ALIKED | |
from typing import Callable, Optional | |
import torch | |
import torch.nn.functional as F | |
import torchvision | |
from kornia.color import grayscale_to_rgb | |
from torch import nn | |
from torch.nn.modules.utils import _pair | |
from torchvision.models import resnet | |
from .utils import Extractor | |
def get_patches( | |
tensor: torch.Tensor, required_corners: torch.Tensor, ps: int | |
) -> torch.Tensor: | |
c, h, w = tensor.shape | |
corner = (required_corners - ps / 2 + 1).long() | |
corner[:, 0] = corner[:, 0].clamp(min=0, max=w - 1 - ps) | |
corner[:, 1] = corner[:, 1].clamp(min=0, max=h - 1 - ps) | |
offset = torch.arange(0, ps) | |
kw = {"indexing": "ij"} if torch.__version__ >= "1.10" else {} | |
x, y = torch.meshgrid(offset, offset, **kw) | |
patches = torch.stack((x, y)).permute(2, 1, 0).unsqueeze(2) | |
patches = patches.to(corner) + corner[None, None] | |
pts = patches.reshape(-1, 2) | |
sampled = tensor.permute(1, 2, 0)[tuple(pts.T)[::-1]] | |
sampled = sampled.reshape(ps, ps, -1, c) | |
assert sampled.shape[:3] == patches.shape[:3] | |
return sampled.permute(2, 3, 0, 1) | |
def simple_nms(scores: torch.Tensor, nms_radius: int): | |
"""Fast Non-maximum suppression to remove nearby points""" | |
zeros = torch.zeros_like(scores) | |
max_mask = scores == torch.nn.functional.max_pool2d( | |
scores, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius | |
) | |
for _ in range(2): | |
supp_mask = ( | |
torch.nn.functional.max_pool2d( | |
max_mask.float(), | |
kernel_size=nms_radius * 2 + 1, | |
stride=1, | |
padding=nms_radius, | |
) | |
> 0 | |
) | |
supp_scores = torch.where(supp_mask, zeros, scores) | |
new_max_mask = supp_scores == torch.nn.functional.max_pool2d( | |
supp_scores, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius | |
) | |
max_mask = max_mask | (new_max_mask & (~supp_mask)) | |
return torch.where(max_mask, scores, zeros) | |
class DKD(nn.Module): | |
def __init__( | |
self, | |
radius: int = 2, | |
top_k: int = 0, | |
scores_th: float = 0.2, | |
n_limit: int = 20000, | |
): | |
""" | |
Args: | |
radius: soft detection radius, kernel size is (2 * radius + 1) | |
top_k: top_k > 0: return top k keypoints | |
scores_th: top_k <= 0 threshold mode: | |
scores_th > 0: return keypoints with scores>scores_th | |
else: return keypoints with scores > scores.mean() | |
n_limit: max number of keypoint in threshold mode | |
""" | |
super().__init__() | |
self.radius = radius | |
self.top_k = top_k | |
self.scores_th = scores_th | |
self.n_limit = n_limit | |
self.kernel_size = 2 * self.radius + 1 | |
self.temperature = 0.1 # tuned temperature | |
self.unfold = nn.Unfold(kernel_size=self.kernel_size, padding=self.radius) | |
# local xy grid | |
x = torch.linspace(-self.radius, self.radius, self.kernel_size) | |
# (kernel_size*kernel_size) x 2 : (w,h) | |
kw = {"indexing": "ij"} if torch.__version__ >= "1.10" else {} | |
self.hw_grid = ( | |
torch.stack(torch.meshgrid([x, x], **kw)).view(2, -1).t()[:, [1, 0]] | |
) | |
def forward( | |
self, | |
scores_map: torch.Tensor, | |
sub_pixel: bool = True, | |
image_size: Optional[torch.Tensor] = None, | |
): | |
""" | |
:param scores_map: Bx1xHxW | |
:param descriptor_map: BxCxHxW | |
:param sub_pixel: whether to use sub-pixel keypoint detection | |
:return: kpts: list[Nx2,...]; kptscores: list[N,....] normalised position: -1~1 | |
""" | |
b, c, h, w = scores_map.shape | |
scores_nograd = scores_map.detach() | |
nms_scores = simple_nms(scores_nograd, self.radius) | |
# remove border | |
nms_scores[:, :, : self.radius, :] = 0 | |
nms_scores[:, :, :, : self.radius] = 0 | |
if image_size is not None: | |
for i in range(scores_map.shape[0]): | |
w, h = image_size[i].long() | |
nms_scores[i, :, h.item() - self.radius :, :] = 0 | |
nms_scores[i, :, :, w.item() - self.radius :] = 0 | |
else: | |
nms_scores[:, :, -self.radius :, :] = 0 | |
nms_scores[:, :, :, -self.radius :] = 0 | |
# detect keypoints without grad | |
if self.top_k > 0: | |
topk = torch.topk(nms_scores.view(b, -1), self.top_k) | |
indices_keypoints = [topk.indices[i] for i in range(b)] # B x top_k | |
else: | |
if self.scores_th > 0: | |
masks = nms_scores > self.scores_th | |
if masks.sum() == 0: | |
th = scores_nograd.reshape(b, -1).mean(dim=1) # th = self.scores_th | |
masks = nms_scores > th.reshape(b, 1, 1, 1) | |
else: | |
th = scores_nograd.reshape(b, -1).mean(dim=1) # th = self.scores_th | |
masks = nms_scores > th.reshape(b, 1, 1, 1) | |
masks = masks.reshape(b, -1) | |
indices_keypoints = [] # list, B x (any size) | |
scores_view = scores_nograd.reshape(b, -1) | |
for mask, scores in zip(masks, scores_view): | |
indices = mask.nonzero()[:, 0] | |
if len(indices) > self.n_limit: | |
kpts_sc = scores[indices] | |
sort_idx = kpts_sc.sort(descending=True)[1] | |
sel_idx = sort_idx[: self.n_limit] | |
indices = indices[sel_idx] | |
indices_keypoints.append(indices) | |
wh = torch.tensor([w - 1, h - 1], device=scores_nograd.device) | |
keypoints = [] | |
scoredispersitys = [] | |
kptscores = [] | |
if sub_pixel: | |
# detect soft keypoints with grad backpropagation | |
patches = self.unfold(scores_map) # B x (kernel**2) x (H*W) | |
self.hw_grid = self.hw_grid.to(scores_map) # to device | |
for b_idx in range(b): | |
patch = patches[b_idx].t() # (H*W) x (kernel**2) | |
indices_kpt = indices_keypoints[ | |
b_idx | |
] # one dimension vector, say its size is M | |
patch_scores = patch[indices_kpt] # M x (kernel**2) | |
keypoints_xy_nms = torch.stack( | |
[indices_kpt % w, torch.div(indices_kpt, w, rounding_mode="trunc")], | |
dim=1, | |
) # Mx2 | |
# max is detached to prevent undesired backprop loops in the graph | |
max_v = patch_scores.max(dim=1).values.detach()[:, None] | |
x_exp = ( | |
(patch_scores - max_v) / self.temperature | |
).exp() # M * (kernel**2), in [0, 1] | |
# \frac{ \sum{(i,j) \times \exp(x/T)} }{ \sum{\exp(x/T)} } | |
xy_residual = ( | |
x_exp @ self.hw_grid / x_exp.sum(dim=1)[:, None] | |
) # Soft-argmax, Mx2 | |
hw_grid_dist2 = ( | |
torch.norm( | |
(self.hw_grid[None, :, :] - xy_residual[:, None, :]) | |
/ self.radius, | |
dim=-1, | |
) | |
** 2 | |
) | |
scoredispersity = (x_exp * hw_grid_dist2).sum(dim=1) / x_exp.sum(dim=1) | |
# compute result keypoints | |
keypoints_xy = keypoints_xy_nms + xy_residual | |
keypoints_xy = keypoints_xy / wh * 2 - 1 # (w,h) -> (-1~1,-1~1) | |
kptscore = torch.nn.functional.grid_sample( | |
scores_map[b_idx].unsqueeze(0), | |
keypoints_xy.view(1, 1, -1, 2), | |
mode="bilinear", | |
align_corners=True, | |
)[ | |
0, 0, 0, : | |
] # CxN | |
keypoints.append(keypoints_xy) | |
scoredispersitys.append(scoredispersity) | |
kptscores.append(kptscore) | |
else: | |
for b_idx in range(b): | |
indices_kpt = indices_keypoints[ | |
b_idx | |
] # one dimension vector, say its size is M | |
# To avoid warning: UserWarning: __floordiv__ is deprecated | |
keypoints_xy_nms = torch.stack( | |
[indices_kpt % w, torch.div(indices_kpt, w, rounding_mode="trunc")], | |
dim=1, | |
) # Mx2 | |
keypoints_xy = keypoints_xy_nms / wh * 2 - 1 # (w,h) -> (-1~1,-1~1) | |
kptscore = torch.nn.functional.grid_sample( | |
scores_map[b_idx].unsqueeze(0), | |
keypoints_xy.view(1, 1, -1, 2), | |
mode="bilinear", | |
align_corners=True, | |
)[ | |
0, 0, 0, : | |
] # CxN | |
keypoints.append(keypoints_xy) | |
scoredispersitys.append(kptscore) # for jit.script compatability | |
kptscores.append(kptscore) | |
return keypoints, scoredispersitys, kptscores | |
class InputPadder(object): | |
"""Pads images such that dimensions are divisible by 8""" | |
def __init__(self, h: int, w: int, divis_by: int = 8): | |
self.ht = h | |
self.wd = w | |
pad_ht = (((self.ht // divis_by) + 1) * divis_by - self.ht) % divis_by | |
pad_wd = (((self.wd // divis_by) + 1) * divis_by - self.wd) % divis_by | |
self._pad = [ | |
pad_wd // 2, | |
pad_wd - pad_wd // 2, | |
pad_ht // 2, | |
pad_ht - pad_ht // 2, | |
] | |
def pad(self, x: torch.Tensor): | |
assert x.ndim == 4 | |
return F.pad(x, self._pad, mode="replicate") | |
def unpad(self, x: torch.Tensor): | |
assert x.ndim == 4 | |
ht = x.shape[-2] | |
wd = x.shape[-1] | |
c = [self._pad[2], ht - self._pad[3], self._pad[0], wd - self._pad[1]] | |
return x[..., c[0] : c[1], c[2] : c[3]] | |
class DeformableConv2d(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False, | |
mask=False, | |
): | |
super(DeformableConv2d, self).__init__() | |
self.padding = padding | |
self.mask = mask | |
self.channel_num = ( | |
3 * kernel_size * kernel_size if mask else 2 * kernel_size * kernel_size | |
) | |
self.offset_conv = nn.Conv2d( | |
in_channels, | |
self.channel_num, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=self.padding, | |
bias=True, | |
) | |
self.regular_conv = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=self.padding, | |
bias=bias, | |
) | |
def forward(self, x): | |
h, w = x.shape[2:] | |
max_offset = max(h, w) / 4.0 | |
out = self.offset_conv(x) | |
if self.mask: | |
o1, o2, mask = torch.chunk(out, 3, dim=1) | |
offset = torch.cat((o1, o2), dim=1) | |
mask = torch.sigmoid(mask) | |
else: | |
offset = out | |
mask = None | |
offset = offset.clamp(-max_offset, max_offset) | |
x = torchvision.ops.deform_conv2d( | |
input=x, | |
offset=offset, | |
weight=self.regular_conv.weight, | |
bias=self.regular_conv.bias, | |
padding=self.padding, | |
mask=mask, | |
) | |
return x | |
def get_conv( | |
inplanes, | |
planes, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False, | |
conv_type="conv", | |
mask=False, | |
): | |
if conv_type == "conv": | |
conv = nn.Conv2d( | |
inplanes, | |
planes, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
bias=bias, | |
) | |
elif conv_type == "dcn": | |
conv = DeformableConv2d( | |
inplanes, | |
planes, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=_pair(padding), | |
bias=bias, | |
mask=mask, | |
) | |
else: | |
raise TypeError | |
return conv | |
class ConvBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
gate: Optional[Callable[..., nn.Module]] = None, | |
norm_layer: Optional[Callable[..., nn.Module]] = None, | |
conv_type: str = "conv", | |
mask: bool = False, | |
): | |
super().__init__() | |
if gate is None: | |
self.gate = nn.ReLU(inplace=True) | |
else: | |
self.gate = gate | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
self.conv1 = get_conv( | |
in_channels, out_channels, kernel_size=3, conv_type=conv_type, mask=mask | |
) | |
self.bn1 = norm_layer(out_channels) | |
self.conv2 = get_conv( | |
out_channels, out_channels, kernel_size=3, conv_type=conv_type, mask=mask | |
) | |
self.bn2 = norm_layer(out_channels) | |
def forward(self, x): | |
x = self.gate(self.bn1(self.conv1(x))) # B x in_channels x H x W | |
x = self.gate(self.bn2(self.conv2(x))) # B x out_channels x H x W | |
return x | |
# modified based on torchvision\models\resnet.py#27->BasicBlock | |
class ResBlock(nn.Module): | |
expansion: int = 1 | |
def __init__( | |
self, | |
inplanes: int, | |
planes: int, | |
stride: int = 1, | |
downsample: Optional[nn.Module] = None, | |
groups: int = 1, | |
base_width: int = 64, | |
dilation: int = 1, | |
gate: Optional[Callable[..., nn.Module]] = None, | |
norm_layer: Optional[Callable[..., nn.Module]] = None, | |
conv_type: str = "conv", | |
mask: bool = False, | |
) -> None: | |
super(ResBlock, self).__init__() | |
if gate is None: | |
self.gate = nn.ReLU(inplace=True) | |
else: | |
self.gate = gate | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
if groups != 1 or base_width != 64: | |
raise ValueError("ResBlock only supports groups=1 and base_width=64") | |
if dilation > 1: | |
raise NotImplementedError("Dilation > 1 not supported in ResBlock") | |
# Both self.conv1 and self.downsample layers | |
# downsample the input when stride != 1 | |
self.conv1 = get_conv( | |
inplanes, planes, kernel_size=3, conv_type=conv_type, mask=mask | |
) | |
self.bn1 = norm_layer(planes) | |
self.conv2 = get_conv( | |
planes, planes, kernel_size=3, conv_type=conv_type, mask=mask | |
) | |
self.bn2 = norm_layer(planes) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
identity = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.gate(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
out = self.gate(out) | |
return out | |
class SDDH(nn.Module): | |
def __init__( | |
self, | |
dims: int, | |
kernel_size: int = 3, | |
n_pos: int = 8, | |
gate=nn.ReLU(), | |
conv2D=False, | |
mask=False, | |
): | |
super(SDDH, self).__init__() | |
self.kernel_size = kernel_size | |
self.n_pos = n_pos | |
self.conv2D = conv2D | |
self.mask = mask | |
self.get_patches_func = get_patches | |
# estimate offsets | |
self.channel_num = 3 * n_pos if mask else 2 * n_pos | |
self.offset_conv = nn.Sequential( | |
nn.Conv2d( | |
dims, | |
self.channel_num, | |
kernel_size=kernel_size, | |
stride=1, | |
padding=0, | |
bias=True, | |
), | |
gate, | |
nn.Conv2d( | |
self.channel_num, | |
self.channel_num, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=True, | |
), | |
) | |
# sampled feature conv | |
self.sf_conv = nn.Conv2d( | |
dims, dims, kernel_size=1, stride=1, padding=0, bias=False | |
) | |
# convM | |
if not conv2D: | |
# deformable desc weights | |
agg_weights = torch.nn.Parameter(torch.rand(n_pos, dims, dims)) | |
self.register_parameter("agg_weights", agg_weights) | |
else: | |
self.convM = nn.Conv2d( | |
dims * n_pos, dims, kernel_size=1, stride=1, padding=0, bias=False | |
) | |
def forward(self, x, keypoints): | |
# x: [B,C,H,W] | |
# keypoints: list, [[N_kpts,2], ...] (w,h) | |
b, c, h, w = x.shape | |
wh = torch.tensor([[w - 1, h - 1]], device=x.device) | |
max_offset = max(h, w) / 4.0 | |
offsets = [] | |
descriptors = [] | |
# get offsets for each keypoint | |
for ib in range(b): | |
xi, kptsi = x[ib], keypoints[ib] | |
kptsi_wh = (kptsi / 2 + 0.5) * wh | |
N_kpts = len(kptsi) | |
if self.kernel_size > 1: | |
patch = self.get_patches_func( | |
xi, kptsi_wh.long(), self.kernel_size | |
) # [N_kpts, C, K, K] | |
else: | |
kptsi_wh_long = kptsi_wh.long() | |
patch = ( | |
xi[:, kptsi_wh_long[:, 1], kptsi_wh_long[:, 0]] | |
.permute(1, 0) | |
.reshape(N_kpts, c, 1, 1) | |
) | |
offset = self.offset_conv(patch).clamp( | |
-max_offset, max_offset | |
) # [N_kpts, 2*n_pos, 1, 1] | |
if self.mask: | |
offset = ( | |
offset[:, :, 0, 0].view(N_kpts, 3, self.n_pos).permute(0, 2, 1) | |
) # [N_kpts, n_pos, 3] | |
offset = offset[:, :, :-1] # [N_kpts, n_pos, 2] | |
mask_weight = torch.sigmoid(offset[:, :, -1]) # [N_kpts, n_pos] | |
else: | |
offset = ( | |
offset[:, :, 0, 0].view(N_kpts, 2, self.n_pos).permute(0, 2, 1) | |
) # [N_kpts, n_pos, 2] | |
offsets.append(offset) # for visualization | |
# get sample positions | |
pos = kptsi_wh.unsqueeze(1) + offset # [N_kpts, n_pos, 2] | |
pos = 2.0 * pos / wh[None] - 1 | |
pos = pos.reshape(1, N_kpts * self.n_pos, 1, 2) | |
# sample features | |
features = F.grid_sample( | |
xi.unsqueeze(0), pos, mode="bilinear", align_corners=True | |
) # [1,C,(N_kpts*n_pos),1] | |
features = features.reshape(c, N_kpts, self.n_pos, 1).permute( | |
1, 0, 2, 3 | |
) # [N_kpts, C, n_pos, 1] | |
if self.mask: | |
features = torch.einsum("ncpo,np->ncpo", features, mask_weight) | |
features = torch.selu_(self.sf_conv(features)).squeeze( | |
-1 | |
) # [N_kpts, C, n_pos] | |
# convM | |
if not self.conv2D: | |
descs = torch.einsum( | |
"ncp,pcd->nd", features, self.agg_weights | |
) # [N_kpts, C] | |
else: | |
features = features.reshape(N_kpts, -1)[ | |
:, :, None, None | |
] # [N_kpts, C*n_pos, 1, 1] | |
descs = self.convM(features).squeeze() # [N_kpts, C] | |
# normalize | |
descs = F.normalize(descs, p=2.0, dim=1) | |
descriptors.append(descs) | |
return descriptors, offsets | |
class ALIKED(Extractor): | |
default_conf = { | |
"model_name": "aliked-n16", | |
"max_num_keypoints": -1, | |
"detection_threshold": 0.2, | |
"nms_radius": 2, | |
} | |
checkpoint_url = "https://github.com/Shiaoming/ALIKED/raw/main/models/{}.pth" | |
n_limit_max = 20000 | |
# c1, c2, c3, c4, dim, K, M | |
cfgs = { | |
"aliked-t16": [8, 16, 32, 64, 64, 3, 16], | |
"aliked-n16": [16, 32, 64, 128, 128, 3, 16], | |
"aliked-n16rot": [16, 32, 64, 128, 128, 3, 16], | |
"aliked-n32": [16, 32, 64, 128, 128, 3, 32], | |
} | |
preprocess_conf = { | |
"resize": 1024, | |
} | |
required_data_keys = ["image"] | |
def __init__(self, **conf): | |
super().__init__(**conf) # Update with default configuration. | |
conf = self.conf | |
c1, c2, c3, c4, dim, K, M = self.cfgs[conf.model_name] | |
conv_types = ["conv", "conv", "dcn", "dcn"] | |
conv2D = False | |
mask = False | |
# build model | |
self.pool2 = nn.AvgPool2d(kernel_size=2, stride=2) | |
self.pool4 = nn.AvgPool2d(kernel_size=4, stride=4) | |
self.norm = nn.BatchNorm2d | |
self.gate = nn.SELU(inplace=True) | |
self.block1 = ConvBlock(3, c1, self.gate, self.norm, conv_type=conv_types[0]) | |
self.block2 = self.get_resblock(c1, c2, conv_types[1], mask) | |
self.block3 = self.get_resblock(c2, c3, conv_types[2], mask) | |
self.block4 = self.get_resblock(c3, c4, conv_types[3], mask) | |
self.conv1 = resnet.conv1x1(c1, dim // 4) | |
self.conv2 = resnet.conv1x1(c2, dim // 4) | |
self.conv3 = resnet.conv1x1(c3, dim // 4) | |
self.conv4 = resnet.conv1x1(dim, dim // 4) | |
self.upsample2 = nn.Upsample( | |
scale_factor=2, mode="bilinear", align_corners=True | |
) | |
self.upsample4 = nn.Upsample( | |
scale_factor=4, mode="bilinear", align_corners=True | |
) | |
self.upsample8 = nn.Upsample( | |
scale_factor=8, mode="bilinear", align_corners=True | |
) | |
self.upsample32 = nn.Upsample( | |
scale_factor=32, mode="bilinear", align_corners=True | |
) | |
self.score_head = nn.Sequential( | |
resnet.conv1x1(dim, 8), | |
self.gate, | |
resnet.conv3x3(8, 4), | |
self.gate, | |
resnet.conv3x3(4, 4), | |
self.gate, | |
resnet.conv3x3(4, 1), | |
) | |
self.desc_head = SDDH(dim, K, M, gate=self.gate, conv2D=conv2D, mask=mask) | |
self.dkd = DKD( | |
radius=conf.nms_radius, | |
top_k=-1 if conf.detection_threshold > 0 else conf.max_num_keypoints, | |
scores_th=conf.detection_threshold, | |
n_limit=conf.max_num_keypoints | |
if conf.max_num_keypoints > 0 | |
else self.n_limit_max, | |
) | |
state_dict = torch.hub.load_state_dict_from_url( | |
self.checkpoint_url.format(conf.model_name), map_location="cpu" | |
) | |
self.load_state_dict(state_dict, strict=True) | |
def get_resblock(self, c_in, c_out, conv_type, mask): | |
return ResBlock( | |
c_in, | |
c_out, | |
1, | |
nn.Conv2d(c_in, c_out, 1), | |
gate=self.gate, | |
norm_layer=self.norm, | |
conv_type=conv_type, | |
mask=mask, | |
) | |
def extract_dense_map(self, image): | |
# Pads images such that dimensions are divisible by | |
div_by = 2**5 | |
padder = InputPadder(image.shape[-2], image.shape[-1], div_by) | |
image = padder.pad(image) | |
# ================================== feature encoder | |
x1 = self.block1(image) # B x c1 x H x W | |
x2 = self.pool2(x1) | |
x2 = self.block2(x2) # B x c2 x H/2 x W/2 | |
x3 = self.pool4(x2) | |
x3 = self.block3(x3) # B x c3 x H/8 x W/8 | |
x4 = self.pool4(x3) | |
x4 = self.block4(x4) # B x dim x H/32 x W/32 | |
# ================================== feature aggregation | |
x1 = self.gate(self.conv1(x1)) # B x dim//4 x H x W | |
x2 = self.gate(self.conv2(x2)) # B x dim//4 x H//2 x W//2 | |
x3 = self.gate(self.conv3(x3)) # B x dim//4 x H//8 x W//8 | |
x4 = self.gate(self.conv4(x4)) # B x dim//4 x H//32 x W//32 | |
x2_up = self.upsample2(x2) # B x dim//4 x H x W | |
x3_up = self.upsample8(x3) # B x dim//4 x H x W | |
x4_up = self.upsample32(x4) # B x dim//4 x H x W | |
x1234 = torch.cat([x1, x2_up, x3_up, x4_up], dim=1) | |
# ================================== score head | |
score_map = torch.sigmoid(self.score_head(x1234)) | |
feature_map = torch.nn.functional.normalize(x1234, p=2, dim=1) | |
# Unpads images | |
feature_map = padder.unpad(feature_map) | |
score_map = padder.unpad(score_map) | |
return feature_map, score_map | |
def forward(self, data: dict) -> dict: | |
image = data["image"] | |
if image.shape[1] == 1: | |
image = grayscale_to_rgb(image) | |
feature_map, score_map = self.extract_dense_map(image) | |
keypoints, kptscores, scoredispersitys = self.dkd( | |
score_map, image_size=data.get("image_size") | |
) | |
descriptors, offsets = self.desc_head(feature_map, keypoints) | |
_, _, h, w = image.shape | |
wh = torch.tensor([w - 1, h - 1], device=image.device) | |
# no padding required | |
# we can set detection_threshold=-1 and conf.max_num_keypoints > 0 | |
return { | |
"keypoints": wh * (torch.stack(keypoints) + 1) / 2.0, # B x N x 2 | |
"descriptors": torch.stack(descriptors), # B x N x D | |
"keypoint_scores": torch.stack(kptscores), # B x N | |
} | |