AniDoc / cotracker /models /core /embeddings.py
fffiloni's picture
Migrated from GitHub
c705408 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Tuple, Union
import torch
def get_2d_sincos_pos_embed(
embed_dim: int, grid_size: Union[int, Tuple[int, int]]
) -> torch.Tensor:
"""
This function initializes a grid and generates a 2D positional embedding using sine and cosine functions.
It is a wrapper of get_2d_sincos_pos_embed_from_grid.
Args:
- embed_dim: The embedding dimension.
- grid_size: The grid size.
Returns:
- pos_embed: The generated 2D positional embedding.
"""
if isinstance(grid_size, tuple):
grid_size_h, grid_size_w = grid_size
else:
grid_size_h = grid_size_w = grid_size
grid_h = torch.arange(grid_size_h, dtype=torch.float)
grid_w = torch.arange(grid_size_w, dtype=torch.float)
grid = torch.meshgrid(grid_w, grid_h, indexing="xy")
grid = torch.stack(grid, dim=0)
grid = grid.reshape([2, 1, grid_size_h, grid_size_w])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
return pos_embed.reshape(1, grid_size_h, grid_size_w, -1).permute(0, 3, 1, 2)
def get_2d_sincos_pos_embed_from_grid(
embed_dim: int, grid: torch.Tensor
) -> torch.Tensor:
"""
This function generates a 2D positional embedding from a given grid using sine and cosine functions.
Args:
- embed_dim: The embedding dimension.
- grid: The grid to generate the embedding from.
Returns:
- emb: The generated 2D positional embedding.
"""
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = torch.cat([emb_h, emb_w], dim=2) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(
embed_dim: int, pos: torch.Tensor
) -> torch.Tensor:
"""
This function generates a 1D positional embedding from a given grid using sine and cosine functions.
Args:
- embed_dim: The embedding dimension.
- pos: The position to generate the embedding from.
Returns:
- emb: The generated 1D positional embedding.
"""
assert embed_dim % 2 == 0
omega = torch.arange(embed_dim // 2, dtype=torch.double)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = torch.sin(out) # (M, D/2)
emb_cos = torch.cos(out) # (M, D/2)
emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D)
return emb[None].float()
def get_2d_embedding(xy: torch.Tensor, C: int, cat_coords: bool = True) -> torch.Tensor:
"""
This function generates a 2D positional embedding from given coordinates using sine and cosine functions.
Args:
- xy: The coordinates to generate the embedding from.
- C: The size of the embedding.
- cat_coords: A flag to indicate whether to concatenate the original coordinates to the embedding.
Returns:
- pe: The generated 2D positional embedding.
"""
B, N, D = xy.shape
assert D == 2
x = xy[:, :, 0:1]
y = xy[:, :, 1:2]
div_term = (
torch.arange(0, C, 2, device=xy.device, dtype=torch.float32) * (1000.0 / C)
).reshape(1, 1, int(C / 2))
pe_x = torch.zeros(B, N, C, device=xy.device, dtype=torch.float32)
pe_y = torch.zeros(B, N, C, device=xy.device, dtype=torch.float32)
pe_x[:, :, 0::2] = torch.sin(x * div_term)
pe_x[:, :, 1::2] = torch.cos(x * div_term)
pe_y[:, :, 0::2] = torch.sin(y * div_term)
pe_y[:, :, 1::2] = torch.cos(y * div_term)
pe = torch.cat([pe_x, pe_y], dim=2) # (B, N, C*3)
if cat_coords:
pe = torch.cat([xy, pe], dim=2) # (B, N, C*3+3)
return pe