Music-To-Image / app.py
fffiloni's picture
Update app.py
2da28ad
raw
history blame
4.33 kB
import gradio as gr
import os
hf_token = os.environ.get('HF_TOKEN')
lpmc_client = gr.load("seungheondoh/LP-Music-Caps-demo", src="spaces")
from gradio_client import Client
client = Client("https://fffiloni-test-llama-api.hf.space/", hf_token=hf_token)
from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
pipe.to("cuda")
#pipe.enable_model_cpu_offload()
# if using torch < 2.0
# pipe.enable_xformers_memory_efficient_attention()
from pydub import AudioSegment
def cut_audio(input_path, output_path, max_duration=30000):
audio = AudioSegment.from_file(input_path)
if len(audio) > max_duration:
audio = audio[:max_duration]
audio.export(output_path, format="mp3")
return output_path
def solo_xd(prompt):
images = pipe(prompt=prompt).images[0]
return images
def infer(audio_file):
truncated_audio = cut_audio(audio_file, "trunc_audio.mp3")
cap_result = lpmc_client(
truncated_audio, # str (filepath or URL to file) in 'audio_path' Audio component
api_name="predict"
)
print(cap_result)
#summarize_q = f"""
#I'll give you a list of music descriptions. Create a summary reflecting the musical ambiance.
#Do not processs each segment, but provide a summary for the whole instead.
#Here's the list:
#{cap_result}
#"""
#summary_result = client.predict(
# summarize_q, # str in 'Message' Textbox component
# api_name="/chat_1"
#)
#print(f"SUMMARY: {summary_result}")
llama_q = f"""
I'll give you a music description, from i want you to provide an illustrative image description that would fit well with the music.
Do not processs each segment or song, but provide a summary for the whole instead.
Answer with only one image description. Never do lists. Maximum 77 tokens.
Here's the music description :
{cap_result}
"""
result = client.predict(
llama_q, # str in 'Message' Textbox component
api_name="/predict"
)
print(f"Llama2 result: {result}")
images = pipe(prompt=result).images[0]
print("Finished")
#return cap_result, result, images
return images, result, gr.update(visible=True)
css = """
#col-container {max-width: 510px; margin-left: auto; margin-right: auto;}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("""<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
Music To Image
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Sends an audio into <a href="https://huggingface.co/spaces/seungheondoh/LP-Music-Caps-demo" target="_blank">LP-Music-Caps</a>
to generate a audio caption which is then translated to an illustrative image description with Llama2, and finally run through
Stable Diffusion XL to generate an image from the audio ! <br /><br />
Note: Only the first 30 seconds of your audio will be used for inference.
</p>
</div>""")
audio_input = gr.Audio(label="Music input", type="filepath", source="upload")
infer_btn = gr.Button("Generate Image from Music")
#lpmc_cap = gr.Textbox(label="Lp Music Caps caption")
llama_trans_cap = gr.Textbox(label="Llama translation", visible=False)
img_result = gr.Image(label="Image Result")
tryagain_btn = gr.Button("Try again ?", visible=False)
#infer_btn.click(fn=infer, inputs=[audio_input], outputs=[lpmc_cap, llama_trans_cap, img_result])
infer_btn.click(fn=infer, inputs=[audio_input], outputs=[img_result, llama_trans_cap, tryagain_btn])
tryagain_btn.click(fn=solo_xd, inputs=[llama_trans_cap], outputs=[img_result])
demo.queue(max_size=20).launch()