sans destroying the poland flag

#3
by Guyen396 - opened
Files changed (44) hide show
  1. .gitattributes +16 -0
  2. .github/workflows/check_size.yml +17 -0
  3. .github/workflows/style.yml +20 -0
  4. .github/workflows/sync_to_hub.yml +20 -0
  5. .github/workflows/sync_to_hub_debug.yml +17 -0
  6. .gitignore +6 -0
  7. CITATION.cff +44 -0
  8. LICENSE +201 -0
  9. Makefile +5 -0
  10. README.md +263 -3
  11. app/gradio/app_gradio.py +179 -0
  12. app/gradio/requirements.txt +4 -0
  13. app/streamlit/app.py +49 -0
  14. app/streamlit/img/loading.gif +0 -0
  15. html2canvas.js +0 -0
  16. img/logo.png +0 -0
  17. index.html +0 -64
  18. pyproject.toml +2 -0
  19. setup.cfg +46 -0
  20. setup.py +4 -0
  21. src/dalle_mini/__init__.py +3 -0
  22. src/dalle_mini/data.py +378 -0
  23. src/dalle_mini/model/__init__.py +5 -0
  24. src/dalle_mini/model/configuration.py +176 -0
  25. src/dalle_mini/model/modeling.py +2093 -0
  26. src/dalle_mini/model/partitions.py +67 -0
  27. src/dalle_mini/model/processor.py +58 -0
  28. src/dalle_mini/model/text.py +262 -0
  29. src/dalle_mini/model/tokenizer.py +8 -0
  30. src/dalle_mini/model/utils.py +27 -0
  31. tools/dataset/encode_dataset.ipynb +371 -0
  32. tools/inference/inference_pipeline.ipynb +479 -0
  33. tools/train/config/medium/config.json +31 -0
  34. tools/train/config/mega/config.json +30 -0
  35. tools/train/config/micro/config.json +30 -0
  36. tools/train/config/mini/config.json +29 -0
  37. tools/train/config/mini_glu/config.json +29 -0
  38. tools/train/scalable_shampoo/README.md +7 -0
  39. tools/train/scalable_shampoo/distributed_shampoo.py +2267 -0
  40. tools/train/scalable_shampoo/quantization_utils.py +124 -0
  41. tools/train/scalable_shampoo/sm3.py +176 -0
  42. tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py +442 -0
  43. tools/train/sweep.yaml +49 -0
  44. tools/train/train.py +1436 -0
.gitattributes ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
2
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.h5 filter=lfs diff=lfs merge=lfs -text
5
+ *.tflite filter=lfs diff=lfs merge=lfs -text
6
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.ot filter=lfs diff=lfs merge=lfs -text
8
+ *.onnx filter=lfs diff=lfs merge=lfs -text
9
+ *.arrow filter=lfs diff=lfs merge=lfs -text
10
+ *.ftz filter=lfs diff=lfs merge=lfs -text
11
+ *.joblib filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.pb filter=lfs diff=lfs merge=lfs -text
15
+ *.pt filter=lfs diff=lfs merge=lfs -text
16
+ *.pth filter=lfs diff=lfs merge=lfs -text
.github/workflows/check_size.yml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Check file size
2
+
3
+ on:
4
+ pull_request:
5
+ branches: [main]
6
+
7
+ # to run this workflow manually from the Actions tab
8
+ workflow_dispatch:
9
+
10
+ jobs:
11
+ sync-to-hub:
12
+ runs-on: ubuntu-latest
13
+ steps:
14
+ - name: Check large files
15
+ uses: ActionsDesk/lfs-warning@v2.0
16
+ with:
17
+ filesizelimit: 10485760 # = 10MB, so we can sync to HF spaces
.github/workflows/style.yml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Lint
2
+
3
+ on:
4
+ push:
5
+ branches: [main]
6
+ pull_request:
7
+ branches: [main]
8
+
9
+ jobs:
10
+ lint:
11
+ runs-on: ubuntu-latest
12
+ steps:
13
+ - uses: actions/checkout@v2
14
+ - uses: psf/black@stable
15
+ - uses: actions/setup-python@v2
16
+ with:
17
+ python-version: 3.9
18
+ - name: Install requirements
19
+ run: pip install ".[dev]"
20
+ - uses: jamescurtin/isort-action@master
.github/workflows/sync_to_hub.yml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Sync to Hugging Face hub
2
+
3
+ on:
4
+ push:
5
+ branches: [main]
6
+
7
+ # to run this workflow manually from the Actions tab
8
+ workflow_dispatch:
9
+
10
+ jobs:
11
+ sync-to-hub:
12
+ runs-on: ubuntu-latest
13
+ steps:
14
+ - uses: actions/checkout@v2
15
+ with:
16
+ fetch-depth: 0
17
+ - name: Push to hub
18
+ env:
19
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
20
+ run: git push https://boris:$HF_TOKEN@huggingface.co/spaces/flax-community/dalle-mini main
.github/workflows/sync_to_hub_debug.yml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Deploy to debug app
2
+
3
+ on:
4
+ # to run this workflow manually from the Actions tab
5
+ workflow_dispatch:
6
+
7
+ jobs:
8
+ sync-to-hub-debug:
9
+ runs-on: ubuntu-latest
10
+ steps:
11
+ - uses: actions/checkout@v2
12
+ with:
13
+ fetch-depth: 0
14
+ - name: Push to hub
15
+ env:
16
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
17
+ run: git push --force https://boris:$HF_TOKEN@huggingface.co/spaces/flax-community/dalle-mini-debug +HEAD:main
.gitignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ __pycache__
2
+ .ipynb_checkpoints
3
+ .streamlit
4
+ wandb/
5
+ *.egg-info/
6
+ jax_cache/
CITATION.cff ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YAML 1.2
2
+ ---
3
+ abstract: "DALL·E mini is a JAX/Flax reimplementation of OpenAI's DALL·E that requires much smaller hardware resources. By simplifying the architecture and model memory requirements, as well as leveraging open-source code and pre-trained models, we were able to create a model that is 27 times smaller than the original DALL·E and train it on a single TPU v3-8 for only 3 days. DALL·E mini achieves impressive results, albeit of a lower quality than the original system. It can be used for exploration and further experimentation on commodity hardware."
4
+ authors:
5
+ -
6
+ family-names: Dayma
7
+ given-names: Boris
8
+ -
9
+ family-names: Patil
10
+ given-names: Suraj
11
+ -
12
+ family-names: Cuenca
13
+ given-names: Pedro
14
+ -
15
+ family-names: Saifullah
16
+ given-names: Khalid
17
+ -
18
+ family-names: Abraham
19
+ given-names: Tanishq
20
+ -
21
+ family-names: "Lê Khắc"
22
+ given-names: "Phúc"
23
+ -
24
+ family-names: Melas
25
+ given-names: Luke
26
+ -
27
+ family-names: Ghosh
28
+ given-names: Ritobrata
29
+ cff-version: "1.1.0"
30
+ date-released: 2021-07-29
31
+ identifiers:
32
+ keywords:
33
+ - dalle
34
+ - "text-to-image generation"
35
+ - transformer
36
+ - "zero-shot"
37
+ - JAX
38
+ license: "Apache-2.0"
39
+ doi: 10.5281/zenodo.5146400
40
+ message: "If you use this project, please cite it using these metadata."
41
+ repository-code: "https://github.com/borisdayma/dalle-mini"
42
+ title: "DALL·E Mini"
43
+ version: "v0.1-alpha"
44
+ ...
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright 2021 The DALL·E mini Authors
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
Makefile ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ .PHONY: style
2
+
3
+ style:
4
+ black .
5
+ isort .
README.md CHANGED
@@ -1,10 +1,270 @@
1
  ---
2
  title: DALL·E mini
3
- metaTitle: "DALL·E mini by craiyon.com on Hugging Face"
4
  emoji: 🥑
5
  colorFrom: yellow
6
  colorTo: green
7
- sdk: static
 
8
  pinned: True
9
- license: apache-2.0
10
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  title: DALL·E mini
 
3
  emoji: 🥑
4
  colorFrom: yellow
5
  colorTo: green
6
+ sdk: streamlit
7
+ app_file: app/streamlit/app.py
8
  pinned: True
 
9
  ---
10
+
11
+ # DALL·E Mini
12
+
13
+ [![Join us on Discord](https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white)](https://discord.gg/xBPBXfcFHd)
14
+
15
+ _Generate images from a text prompt_
16
+
17
+ <img src="https://github.com/borisdayma/dalle-mini/raw/main/img/logo.png" width="200">
18
+
19
+ Our logo was generated with DALL·E mini using the prompt "logo of an armchair in the shape of an avocado".
20
+
21
+ You can create your own pictures with [the demo](https://huggingface.co/spaces/flax-community/dalle-mini).
22
+
23
+ ## How does it work?
24
+
25
+ Refer to [our report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA).
26
+
27
+ ## Inference Pipeline
28
+
29
+ To generate sample predictions and understand the inference pipeline step by step, refer to [`tools/inference/inference_pipeline.ipynb`](tools/inference/inference_pipeline.ipynb).
30
+
31
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/dalle-mini/blob/main/tools/inference/inference_pipeline.ipynb)
32
+
33
+ ## Contributing
34
+
35
+ Join the community on the [DALLE-Pytorch Discord](https://discord.gg/xBPBXfcFHd).
36
+ Any contribution is welcome, from reporting issues to proposing fixes/improvements or testing the model with cool prompts!
37
+
38
+ ## Development
39
+
40
+ ### Dependencies Installation
41
+
42
+ For inference only, use `pip install git+https://github.com/borisdayma/dalle-mini.git`.
43
+
44
+ For development, clone the repo and use `pip install -e ".[dev]"`.
45
+ Before making a PR, check style with `make style`.
46
+
47
+ ### Image Encoder
48
+
49
+ We use a VQGAN from [taming-transformers](https://github.com/CompVis/taming-transformers), which can also be fine-tuned.
50
+
51
+ Use [patil-suraj/vqgan-jax](https://github.com/patil-suraj/vqgan-jax) if you want to convert a checkpoint to JAX (does not support Gumbel).
52
+
53
+ Any image encoder that turns an image into a fixed sequence of tokens can be used.
54
+
55
+ ### Training of DALL·E mini
56
+
57
+ Use [`tools/train/train.py`](tools/train/train.py).
58
+
59
+ You can also adjust the [sweep configuration file](https://docs.wandb.ai/guides/sweeps) if you need to perform a hyperparameter search.
60
+
61
+ ## FAQ
62
+
63
+ ### Where to find the latest models?
64
+
65
+ Trained models are on 🤗 Model Hub:
66
+
67
+ - [VQGAN-f16-16384](https://huggingface.co/dalle-mini/vqgan_imagenet_f16_16384) for encoding/decoding images
68
+ - [DALL·E mini](https://huggingface.co/flax-community/dalle-mini) for generating images from a text prompt
69
+
70
+ ### Where does the logo come from?
71
+
72
+ The "armchair in the shape of an avocado" was used by OpenAI when releasing DALL·E to illustrate the model's capabilities. Having successful predictions on this prompt represents a big milestone to us.
73
+
74
+ ## Acknowledgements
75
+
76
+ - 🤗 Hugging Face for organizing [the FLAX/JAX community week](https://github.com/huggingface/transformers/tree/master/examples/research_projects/jax-projects)
77
+ - Google [TPU Research Cloud (TRC) program](https://sites.research.google/trc/) for providing computing resources
78
+ - [Weights & Biases](https://wandb.com/) for providing the infrastructure for experiment tracking and model management
79
+
80
+ ## Authors & Contributors
81
+
82
+ DALL·E mini was initially developed by:
83
+
84
+ - [Boris Dayma](https://github.com/borisdayma)
85
+ - [Suraj Patil](https://github.com/patil-suraj)
86
+ - [Pedro Cuenca](https://github.com/pcuenca)
87
+ - [Khalid Saifullah](https://github.com/khalidsaifullaah)
88
+ - [Tanishq Abraham](https://github.com/tmabraham)
89
+ - [Phúc Lê Khắc](https://github.com/lkhphuc)
90
+ - [Luke Melas](https://github.com/lukemelas)
91
+ - [Ritobrata Ghosh](https://github.com/ghosh-r)
92
+
93
+ Many thanks to the people who helped make it better:
94
+
95
+ - the [DALLE-Pytorch](https://discord.gg/xBPBXfcFHd) and [EleutherAI](https://www.eleuther.ai/) communities for testing and exchanging cool ideas
96
+ - [Rohan Anil](https://github.com/rohan-anil) for adding Distributed Shampoo optimizer
97
+ - [Phil Wang](https://github.com/lucidrains) has provided a lot of cool implementations of transformer variants and gives interesting insights with [x-transformers](https://github.com/lucidrains/x-transformers)
98
+ - [Katherine Crowson](https://github.com/crowsonkb) for [super conditioning](https://twitter.com/RiversHaveWings/status/1478093658716966912)
99
+
100
+ ## Citing DALL·E mini
101
+
102
+ If you find DALL·E mini useful in your research or wish to refer, please use the following BibTeX entry.
103
+
104
+ ```text
105
+ @misc{Dayma_DALL·E_Mini_2021,
106
+ author = {Dayma, Boris and Patil, Suraj and Cuenca, Pedro and Saifullah, Khalid and Abraham, Tanishq and Lê Khắc, Phúc and Melas, Luke and Ghosh, Ritobrata},
107
+ doi = {10.5281/zenodo.5146400},
108
+ month = {7},
109
+ title = {DALL·E Mini},
110
+ url = {https://github.com/borisdayma/dalle-mini},
111
+ year = {2021}
112
+ }
113
+ ```
114
+
115
+ ## References
116
+
117
+ Original DALL·E from "[Zero-Shot Text-to-Image Generation](https://arxiv.org/abs/2102.12092)" with image quantization from "[Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020)".
118
+
119
+ Image encoder from "[Taming Transformers for High-Resolution Image Synthesis](https://arxiv.org/abs/2012.09841v2)".
120
+
121
+ Sequence to sequence model based on "[BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461v1)" with implementation of a few variants:
122
+
123
+ - "[GLU Variants Improve Transformer](https://arxiv.org/abs/2002.05202)"
124
+ - "[Deepnet: Scaling Transformers to 1,000 Layers](https://arxiv.org/abs/2203.00555)"
125
+ - "[NormFormer: Improved Transformer Pretraining with Extra Normalization](https://arxiv.org/abs/2110.09456)"
126
+ - "[Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)"
127
+ - "[CogView: Mastering Text-to-Image Generation via Transformers](https://arxiv.org/abs/2105.13290v2)"
128
+ - "[Root Mean Square Layer Normalization](https://arxiv.org/abs/1910.07467)"
129
+ - "[Sinkformers: Transformers with Doubly Stochastic Attention](https://arxiv.org/abs/2110.11773)"
130
+
131
+ Main optimizer (Distributed Shampoo) from "[Scalable Second Order Optimization for Deep Learning](https://arxiv.org/abs/2002.09018)".
132
+
133
+ ### Citations
134
+
135
+ ```text
136
+ @misc{
137
+ title={Zero-Shot Text-to-Image Generation},
138
+ author={Aditya Ramesh and Mikhail Pavlov and Gabriel Goh and Scott Gray and Chelsea Voss and Alec Radford and Mark Chen and Ilya Sutskever},
139
+ year={2021},
140
+ eprint={2102.12092},
141
+ archivePrefix={arXiv},
142
+ primaryClass={cs.CV}
143
+ }
144
+ ```
145
+
146
+ ```text
147
+ @misc{
148
+ title={Learning Transferable Visual Models From Natural Language Supervision},
149
+ author={Alec Radford and Jong Wook Kim and Chris Hallacy and Aditya Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
150
+ year={2021},
151
+ eprint={2103.00020},
152
+ archivePrefix={arXiv},
153
+ primaryClass={cs.CV}
154
+ }
155
+ ```
156
+
157
+ ```text
158
+ @misc{
159
+ title={Taming Transformers for High-Resolution Image Synthesis},
160
+ author={Patrick Esser and Robin Rombach and Björn Ommer},
161
+ year={2021},
162
+ eprint={2012.09841},
163
+ archivePrefix={arXiv},
164
+ primaryClass={cs.CV}
165
+ }
166
+ ```
167
+
168
+ ```text
169
+ @misc{
170
+ title={BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension},
171
+ author={Mike Lewis and Yinhan Liu and Naman Goyal and Marjan Ghazvininejad and Abdelrahman Mohamed and Omer Levy and Ves Stoyanov and Luke Zettlemoyer},
172
+ year={2019},
173
+ eprint={1910.13461},
174
+ archivePrefix={arXiv},
175
+ primaryClass={cs.CL}
176
+ }
177
+ ```
178
+
179
+ ```text
180
+ @misc{
181
+ title={Scalable Second Order Optimization for Deep Learning},
182
+ author={Rohan Anil and Vineet Gupta and Tomer Koren and Kevin Regan and Yoram Singer},
183
+ year={2021},
184
+ eprint={2002.09018},
185
+ archivePrefix={arXiv},
186
+ primaryClass={cs.LG}
187
+ }
188
+ ```
189
+
190
+ ```text
191
+ @misc{
192
+ title={GLU Variants Improve Transformer},
193
+ author={Noam Shazeer},
194
+ year={2020},
195
+ url={https://arxiv.org/abs/2002.05202}
196
+ }
197
+ ```
198
+
199
+ ```text
200
+ @misc{
201
+ title={DeepNet: Scaling transformers to 1,000 layers},
202
+ author={Wang, Hongyu and Ma, Shuming and Dong, Li and Huang, Shaohan and Zhang, Dongdong and Wei, Furu},
203
+ year={2022},
204
+ eprint={2203.00555}
205
+ archivePrefix={arXiv},
206
+ primaryClass={cs.LG}
207
+ }
208
+ ```
209
+
210
+ ```text
211
+ @misc{
212
+ title={NormFormer: Improved Transformer Pretraining with Extra Normalization},
213
+ author={Sam Shleifer and Jason Weston and Myle Ott},
214
+ year={2021},
215
+ eprint={2110.09456},
216
+ archivePrefix={arXiv},
217
+ primaryClass={cs.CL}
218
+ }
219
+ ```
220
+
221
+ ```text
222
+ @inproceedings{
223
+ title={Swin Transformer V2: Scaling Up Capacity and Resolution},
224
+ author={Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo},
225
+ booktitle={International Conference on Computer Vision and Pattern Recognition (CVPR)},
226
+ year={2022}
227
+ }
228
+ ```
229
+
230
+ ```text
231
+ @misc{
232
+ title = {CogView: Mastering Text-to-Image Generation via Transformers},
233
+ author = {Ming Ding and Zhuoyi Yang and Wenyi Hong and Wendi Zheng and Chang Zhou and Da Yin and Junyang Lin and Xu Zou and Zhou Shao and Hongxia Yang and Jie Tang},
234
+ year = {2021},
235
+ eprint = {2105.13290},
236
+ archivePrefix = {arXiv},
237
+ primaryClass = {cs.CV}
238
+ }
239
+ ```
240
+
241
+ ```text
242
+ @misc{
243
+ title = {Root Mean Square Layer Normalization},
244
+ author = {Biao Zhang and Rico Sennrich},
245
+ year = {2019},
246
+ eprint = {1910.07467},
247
+ archivePrefix = {arXiv},
248
+ primaryClass = {cs.LG}
249
+ }
250
+ ```
251
+
252
+ ```text
253
+ @misc{
254
+ title = {Sinkformers: Transformers with Doubly Stochastic Attention},
255
+ url = {https://arxiv.org/abs/2110.11773},
256
+ author = {Sander, Michael E. and Ablin, Pierre and Blondel, Mathieu and Peyré, Gabriel},
257
+ publisher = {arXiv},
258
+ year = {2021},
259
+ }
260
+ ```
261
+
262
+ ```text
263
+ @misc{
264
+ title = {Smooth activations and reproducibility in deep networks},
265
+ url = {https://arxiv.org/abs/2010.09931},
266
+ author = {Shamir, Gil I. and Lin, Dong and Coviello, Lorenzo},
267
+ publisher = {arXiv},
268
+ year = {2020},
269
+ }
270
+ ```
app/gradio/app_gradio.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ # Uncomment to run on cpu
5
+ # import os
6
+ # os.environ["JAX_PLATFORM_NAME"] = "cpu"
7
+
8
+ import random
9
+
10
+ import gradio as gr
11
+ import jax
12
+ import numpy as np
13
+ from flax.jax_utils import replicate
14
+ from flax.training.common_utils import shard
15
+ from PIL import Image, ImageDraw, ImageFont
16
+
17
+ # ## CLIP Scoring
18
+ from transformers import BartTokenizer, CLIPProcessor, FlaxCLIPModel
19
+ from vqgan_jax.modeling_flax_vqgan import VQModel
20
+
21
+ from dalle_mini.model import CustomFlaxBartForConditionalGeneration
22
+
23
+ DALLE_REPO = "flax-community/dalle-mini"
24
+ DALLE_COMMIT_ID = "4d34126d0df8bc4a692ae933e3b902a1fa8b6114"
25
+
26
+ VQGAN_REPO = "flax-community/vqgan_f16_16384"
27
+ VQGAN_COMMIT_ID = "90cc46addd2dd8f5be21586a9a23e1b95aa506a9"
28
+
29
+ tokenizer = BartTokenizer.from_pretrained(DALLE_REPO, revision=DALLE_COMMIT_ID)
30
+ model = CustomFlaxBartForConditionalGeneration.from_pretrained(
31
+ DALLE_REPO, revision=DALLE_COMMIT_ID
32
+ )
33
+ vqgan = VQModel.from_pretrained(VQGAN_REPO, revision=VQGAN_COMMIT_ID)
34
+
35
+
36
+ def captioned_strip(images, caption=None, rows=1):
37
+ increased_h = 0 if caption is None else 48
38
+ w, h = images[0].size[0], images[0].size[1]
39
+ img = Image.new("RGB", (len(images) * w // rows, h * rows + increased_h))
40
+ for i, img_ in enumerate(images):
41
+ img.paste(img_, (i // rows * w, increased_h + (i % rows) * h))
42
+
43
+ if caption is not None:
44
+ draw = ImageDraw.Draw(img)
45
+ font = ImageFont.truetype(
46
+ "/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 40
47
+ )
48
+ draw.text((20, 3), caption, (255, 255, 255), font=font)
49
+ return img
50
+
51
+
52
+ def custom_to_pil(x):
53
+ x = np.clip(x, 0.0, 1.0)
54
+ x = (255 * x).astype(np.uint8)
55
+ x = Image.fromarray(x)
56
+ if not x.mode == "RGB":
57
+ x = x.convert("RGB")
58
+ return x
59
+
60
+
61
+ def generate(input, rng, params):
62
+ return model.generate(
63
+ **input,
64
+ max_length=257,
65
+ num_beams=1,
66
+ do_sample=True,
67
+ prng_key=rng,
68
+ eos_token_id=50000,
69
+ pad_token_id=50000,
70
+ params=params,
71
+ )
72
+
73
+
74
+ def get_images(indices, params):
75
+ return vqgan.decode_code(indices, params=params)
76
+
77
+
78
+ p_generate = jax.pmap(generate, "batch")
79
+ p_get_images = jax.pmap(get_images, "batch")
80
+
81
+ bart_params = replicate(model.params)
82
+ vqgan_params = replicate(vqgan.params)
83
+
84
+ clip = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
85
+ print("Initialize FlaxCLIPModel")
86
+ processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
87
+ print("Initialize CLIPProcessor")
88
+
89
+
90
+ def hallucinate(prompt, num_images=64):
91
+ prompt = [prompt] * jax.device_count()
92
+ inputs = tokenizer(
93
+ prompt,
94
+ return_tensors="jax",
95
+ padding="max_length",
96
+ truncation=True,
97
+ max_length=128,
98
+ ).data
99
+ inputs = shard(inputs)
100
+
101
+ all_images = []
102
+ for i in range(num_images // jax.device_count()):
103
+ key = random.randint(0, 1e7)
104
+ rng = jax.random.PRNGKey(key)
105
+ rngs = jax.random.split(rng, jax.local_device_count())
106
+ indices = p_generate(inputs, rngs, bart_params).sequences
107
+ indices = indices[:, :, 1:]
108
+
109
+ images = p_get_images(indices, vqgan_params)
110
+ images = np.squeeze(np.asarray(images), 1)
111
+ for image in images:
112
+ all_images.append(custom_to_pil(image))
113
+ return all_images
114
+
115
+
116
+ def clip_top_k(prompt, images, k=8):
117
+ inputs = processor(text=prompt, images=images, return_tensors="np", padding=True)
118
+ outputs = clip(**inputs)
119
+ logits = outputs.logits_per_text
120
+ scores = np.array(logits[0]).argsort()[-k:][::-1]
121
+ return [images[score] for score in scores]
122
+
123
+
124
+ def compose_predictions(images, caption=None):
125
+ increased_h = 0 if caption is None else 48
126
+ w, h = images[0].size[0], images[0].size[1]
127
+ img = Image.new("RGB", (len(images) * w, h + increased_h))
128
+ for i, img_ in enumerate(images):
129
+ img.paste(img_, (i * w, increased_h))
130
+
131
+ if caption is not None:
132
+ draw = ImageDraw.Draw(img)
133
+ font = ImageFont.truetype(
134
+ "/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 40
135
+ )
136
+ draw.text((20, 3), caption, (255, 255, 255), font=font)
137
+ return img
138
+
139
+
140
+ def top_k_predictions(prompt, num_candidates=32, k=8):
141
+ images = hallucinate(prompt, num_images=num_candidates)
142
+ images = clip_top_k(prompt, images, k=k)
143
+ return images
144
+
145
+
146
+ def run_inference(prompt, num_images=32, num_preds=8):
147
+ images = top_k_predictions(prompt, num_candidates=num_images, k=num_preds)
148
+ predictions = captioned_strip(images)
149
+ output_title = f"""
150
+ <b>{prompt}</b>
151
+ """
152
+ return (output_title, predictions)
153
+
154
+
155
+ outputs = [
156
+ gr.outputs.HTML(label=""), # To be used as title
157
+ gr.outputs.Image(label=""),
158
+ ]
159
+
160
+ description = """
161
+ DALL·E-mini is an AI model that generates images from any prompt you give! Generate images from text:
162
+ """
163
+ gr.Interface(
164
+ run_inference,
165
+ inputs=[gr.inputs.Textbox(label="What do you want to see?")],
166
+ outputs=outputs,
167
+ title="DALL·E mini",
168
+ description=description,
169
+ article="<p style='text-align: center'> Created by Boris Dayma et al. 2021 | <a href='https://github.com/borisdayma/dalle-mini'>GitHub</a> | <a href='https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA'>Report</a></p>",
170
+ layout="vertical",
171
+ theme="huggingface",
172
+ examples=[
173
+ ["an armchair in the shape of an avocado"],
174
+ ["snowy mountains by the sea"],
175
+ ],
176
+ allow_flagging=False,
177
+ live=False,
178
+ # server_port=8999
179
+ ).launch(share=True)
app/gradio/requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Requirements for huggingface spaces
2
+ gradio>=2.2.3
3
+ flax
4
+ transformers
app/streamlit/app.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ import streamlit as st
5
+
6
+ st.sidebar.markdown(
7
+ """
8
+ <style>
9
+ .aligncenter {
10
+ text-align: center;
11
+ }
12
+ </style>
13
+ <p class="aligncenter">
14
+ <img src="https://raw.githubusercontent.com/borisdayma/dalle-mini/main/img/logo.png"/>
15
+ </p>
16
+ """,
17
+ unsafe_allow_html=True,
18
+ )
19
+ st.sidebar.markdown(
20
+ """
21
+ ___
22
+ <p style='text-align: center'>
23
+ DALL·E mini is an AI model that generates images from any prompt you give!
24
+ </p>
25
+
26
+ <p style='text-align: center'>
27
+ Created by Boris Dayma et al. 2021
28
+ <br/>
29
+ <a href="https://github.com/borisdayma/dalle-mini" target="_blank">GitHub</a> | <a href="https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA" target="_blank">Project Report</a>
30
+ </p>
31
+ """,
32
+ unsafe_allow_html=True,
33
+ )
34
+
35
+ st.header("DALL·E mini")
36
+ st.subheader("Generate images from text")
37
+
38
+ container = st.empty()
39
+ container.markdown(
40
+ f"""
41
+ A new demo with a better model is now available [in this space](https://huggingface.co/spaces/dalle-mini/dalle-mini)! Check it out!
42
+
43
+ For more information about the project, please visit:
44
+ * [Our GitHub repository](https://github.com/borisdayma/dalle-mini).
45
+ * [The project report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA) we wrote during the initial JAX-Flax sprint organized by 🤗 Hugging Face.
46
+
47
+ Stay tuned for larger and better models, and more technical details!
48
+ """
49
+ )
app/streamlit/img/loading.gif ADDED
html2canvas.js DELETED
The diff for this file is too large to render. See raw diff
 
img/logo.png ADDED
index.html DELETED
@@ -1,64 +0,0 @@
1
-
2
- <!DOCTYPE html>
3
- <html lang="en">
4
- <head>
5
- <meta charset="utf-8" />
6
- <meta
7
- name="viewport"
8
- content="width=device-width, initial-scale=1, shrink-to-fit=no, maximum-scale=1"
9
- />
10
-
11
- <script>
12
- window.__gradio_mode__ = "app";
13
- window.gradio_config = {"version": "3.0.26\n", "mode": "blocks", "dev_mode": false, "components": [{"id": 1, "type": "column", "props": {"type": "column", "variant": "default", "visible": true, "style": {}}}, {"id": 2, "type": "markdown", "props": {"value": "<h1><center>DALL\u00b7E mini by <a href=\"https://www.craiyon.com/\" target=\"_blank\">craiyon.com</a></center></h1>", "name": "markdown", "visible": true, "style": {}}}, {"id": 3, "type": "markdown", "props": {"value": "<center>AI model generating images from any prompt!</center>", "name": "markdown", "visible": true, "style": {}}}, {"id": 4, "type": "group", "props": {"type": "group", "visible": true, "style": {}}}, {"id": 5, "type": "box", "props": {"type": "box", "visible": true, "style": {}}}, {"id": 6, "type": "row", "props": {"type": "row", "visible": true, "style": {"equal_height": true, "mobile_collapse": false}}}, {"id": 7, "type": "textbox", "props": {"lines": 1, "max_lines": 1, "value": "", "label": "Enter your prompt", "show_label": false, "name": "textbox", "visible": true, "elem_id": "prompt", "style": {"container": false}}}, {"id": 8, "type": "button", "props": {"value": "Run", "variant": "primary", "name": "button", "visible": true, "style": {}}}, {"id": 9, "type": "gallery", "props": {"value": [], "label": "Generated images", "show_label": false, "name": "gallery", "visible": true, "elem_id": "gallery", "style": {"grid": [3], "height": "auto"}}}, {"id": 10, "type": "column", "props": {"type": "column", "variant": "default", "visible": true, "style": {}}}, {"id": 11, "type": "button", "props": {"value": "Screenshot", "variant": "secondary", "name": "button", "visible": true, "elem_id": "screenshot", "style": {"full_width": true}}}, {"id": 12, "type": "markdown", "props": {"value": "<details>\n<summary>Bias and Limitations</summary>\n<p style='line-height: normal; font-size: small'>\nWhile the capabilities of image generation models are impressive, they may also reinforce or exacerbate societal biases. While the extent and nature of the biases of the DALL\u00b7E mini model have yet to be fully documented, given the fact that the model was trained on unfiltered data from the Internet, it may generate images that contain stereotypes against minority groups. Work to analyze the nature and extent of these limitations is ongoing, and will be documented in more detail in the <a href=\"https://huggingface.co/dalle-mini/dalle-mini\" target=\"_blank\">DALL\u00b7E mini model card</a>.\n</p>\n</details>", "name": "markdown", "visible": true, "style": {}}}, {"id": 13, "type": "markdown", "props": {"value": "<p style='text-align: center'>\nDALL\u00b7E mini has migrated to \ud83d\udd8d\ufe0f <a href=\"https://www.craiyon.com/\" target=\"_blank\">craiyon.com</a>\n</p>", "name": "markdown", "visible": true, "style": {}}}, {"id": 14, "type": "markdown", "props": {"value": "<hr />\n<p style='text-align: center'>\nCreated by <a href=\"https://twitter.com/borisdayma\" target=\"_blank\">Boris Dayma</a> et al. 2021-2022\n<br/>\n<a href=\"https://github.com/borisdayma/dalle-mini\" target=\"_blank\">GitHub</a> | <a href=\"https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini-Generate-images-from-any-text-prompt--VmlldzoyMDE4NDAy\" target=\"_blank\">Project Report</a>\n<p style='text-align: center'>Powered by Google <a href=\"https://sites.research.google/trc/\" target=\"_blank\">TPU Research Cloud</a>\n</p>", "name": "markdown", "visible": true, "style": {}}}], "theme": "default", "css": ".container { max-width: 800px; margin: auto; }", "title": "Gradio", "enable_queue": false, "layout": {"id": 0, "children": [{"id": 1, "children": [{"id": 2}, {"id": 3}, {"id": 4, "children": [{"id": 5, "children": [{"id": 6, "children": [{"id": 7}, {"id": 8}]}]}, {"id": 9}]}]}, {"id": 10, "children": [{"id": 11}, {"id": 12}, {"id": 13}, {"id": 14}]}]}, "dependencies": [{"targets": [8], "trigger": "click", "inputs": [7], "outputs": [9], "backend_fn": false, "js": "\n async (text) => {\n var prompt = encodeURIComponent(text);\n if (text == \"\") {\n window.open(\"https://www.craiyon.com\", '_blank');\n } else {\n window.open(\"https://www.craiyon.com/?prompt=\" + prompt, '_blank');\n }\n }\n ", "status_tracker": null, "queue": null, "api_name": null, "scroll_to_output": false, "show_progress": true}, {"targets": [11], "trigger": "click", "inputs": [], "outputs": [], "backend_fn": false, "js": "\n () => {\n const captureElement = document.getElementById(1)\n let bg_color = getComputedStyle(document.querySelector(\"#root .container\"))[\"background-color\"]\n captureElement.style.backgroundColor = bg_color; \n html2canvas(captureElement)\n .then(canvas => {\n canvas.style.display = 'none'\n document.body.appendChild(canvas)\n return canvas\n })\n .then(canvas => {\n const image = canvas.toDataURL('image/png').replace('image/png', 'image/octet-stream')\n const a = document.createElement('a')\n const date = new Date()\n const filename = `dallemini_${date.getFullYear()}-${date.getMonth() + 1}-${date.getDate()}_${date.getHours()}-${date.getMinutes()}-${date.getSeconds()}.png`\n a.setAttribute('download', filename)\n a.setAttribute('href', image)\n a.click()\n canvas.remove()\n })\n }\n ", "status_tracker": null, "queue": null, "api_name": null, "scroll_to_output": false, "show_progress": true}]};
14
- </script>
15
-
16
- <link rel="preconnect" href="https://fonts.googleapis.com" />
17
- <link
18
- rel="preconnect"
19
- href="https://fonts.gstatic.com"
20
- crossorigin="anonymous"
21
- />
22
- <link
23
- href="https://fonts.googleapis.com/css?family=Source Sans Pro"
24
- rel="stylesheet"
25
- />
26
- <link
27
- href="https://fonts.googleapis.com/css?family=IBM Plex Mono"
28
- rel="stylesheet"
29
- />
30
- <script src="https://cdnjs.cloudflare.com/ajax/libs/iframe-resizer/4.3.1/iframeResizer.contentWindow.min.js"></script>
31
- <script type="module" crossorigin src="https://gradio.s3-us-west-2.amazonaws.com/3.0.9b12/assets/index.8eca4ae7.js"></script>
32
- <link rel="stylesheet" href="https://gradio.s3-us-west-2.amazonaws.com/3.0.9b12/assets/index.cbea297d.css">
33
- <style>
34
- #screenshot {
35
- display: none;
36
- }
37
- .container > div > div {
38
- padding: 0.5rem;
39
- }
40
- footer a {
41
- color: rgb(156 163 175) !important;
42
- }
43
- footer img {
44
- display: none !important;
45
- }
46
- </style>
47
- </head>
48
-
49
- <body
50
- style="
51
- margin: 0;
52
- padding: 0;
53
- display: flex;
54
- flex-direction: column;
55
- flex-grow: 1;
56
- "
57
- >
58
- <div
59
- id="root"
60
- style="display: flex; flex-direction: column; flex-grow: 1"
61
- ></div>
62
- <script src="html2canvas.js"></script>
63
- </body>
64
- </html>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pyproject.toml ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ [tool.isort]
2
+ profile = "black"
setup.cfg ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [metadata]
2
+ name = dalle-mini
3
+ version = attr: dalle_mini.__version__
4
+ author = Boris Dayma et al.
5
+ author_email = boris.dayma@gmail.com
6
+ description = DALL·E mini - Generate images from a text prompt
7
+ long_description = file: README.md
8
+ long_description_content_type = text/markdown
9
+ url = https://github.com/borisdayma/dalle-mini
10
+ project_urls =
11
+ Bug Tracker = https://github.com/borisdayma/dalle-mini/issues
12
+ classifiers =
13
+ Programming Language :: Python :: 3
14
+ License :: OSI Approved :: Apache Software License
15
+ Operating System :: OS Independent
16
+ Topic :: Scientific/Engineering :: Artificial Intelligence
17
+ Development Status :: 3 - Alpha
18
+ Intended Audience :: Developers
19
+
20
+ [options]
21
+ package_dir =
22
+ =src
23
+ packages = find:
24
+ python_requires = >=3.6
25
+ install_requires =
26
+ transformers
27
+ einops
28
+ unidecode
29
+ ftfy
30
+ emoji
31
+ pillow
32
+ jax
33
+ flax
34
+ wandb
35
+
36
+ [options.extras_require]
37
+ dev =
38
+ tqdm
39
+ optax
40
+ braceexpand
41
+ datasets[streaming]
42
+ black[jupyter]
43
+ isort
44
+
45
+ [options.packages.find]
46
+ where = src
setup.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from setuptools import setup
2
+
3
+ if __name__ == "__main__":
4
+ setup()
src/dalle_mini/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ __version__ = "0.0.4"
2
+
3
+ from .model import DalleBart, DalleBartProcessor
src/dalle_mini/data.py ADDED
@@ -0,0 +1,378 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ from dataclasses import dataclass, field
3
+ from functools import partial
4
+
5
+ import jax
6
+ import jax.numpy as jnp
7
+ import numpy as np
8
+ from braceexpand import braceexpand
9
+ from datasets import Dataset, load_dataset
10
+
11
+ from .model.text import TextNormalizer
12
+
13
+
14
+ @dataclass
15
+ class Dataset:
16
+ dataset_repo_or_path: str
17
+ train_file: str = None
18
+ validation_file: str = None
19
+ streaming: bool = True
20
+ use_auth_token: bool = False
21
+ text_column: str = "caption"
22
+ encoding_column: str = "encoding"
23
+ max_train_samples: int = None
24
+ max_eval_samples: int = None
25
+ preprocessing_num_workers: int = None
26
+ overwrite_cache: bool = False
27
+ do_train: bool = False
28
+ do_eval: bool = True
29
+ seed_dataset: int = None
30
+ shard_by_host: bool = False
31
+ blank_caption_prob: float = 0.0
32
+ clip_score_column: str = "clip_score"
33
+ min_clip_score: float = None
34
+ max_clip_score: float = None
35
+ filter_column: str = None
36
+ filter_value: str = None
37
+ train_dataset: Dataset = field(init=False)
38
+ eval_dataset: Dataset = field(init=False)
39
+ rng_dataset: jnp.ndarray = field(init=False)
40
+ multi_hosts: bool = field(init=False)
41
+
42
+ def __post_init__(self):
43
+ if self.seed_dataset is None:
44
+ # create a random seed
45
+ self.seed_dataset = random.randint(0, 2**32 - 1)
46
+ self.multi_hosts = jax.process_count() > 1
47
+ # feed blank captions only in streaming mode for now
48
+ # otherwise dataset could be cached with same blanked captions
49
+ if self.blank_caption_prob:
50
+ assert (
51
+ self.streaming is True
52
+ ), "blank_caption_prob can only be used in streaming mode"
53
+ # define data_files
54
+ if self.train_file is not None or self.validation_file is not None:
55
+ # accept braceexpand notation
56
+ for k in ["train_file", "validation_file"]:
57
+ f = getattr(self, k)
58
+ if isinstance(f, str):
59
+ setattr(self, k, list(braceexpand(f)))
60
+ # for list of files, split training data shards by host
61
+ if (
62
+ isinstance(self.train_file, list)
63
+ and self.multi_hosts
64
+ and self.shard_by_host
65
+ ):
66
+ self.train_file = self.train_file[
67
+ jax.process_index() :: jax.process_count()
68
+ ]
69
+ data_files = {
70
+ "train": self.train_file,
71
+ "validation": self.validation_file,
72
+ }
73
+ else:
74
+ data_files = None
75
+
76
+ # load dataset
77
+ dataset = load_dataset(
78
+ self.dataset_repo_or_path,
79
+ data_files=data_files,
80
+ streaming=self.streaming,
81
+ use_auth_token=self.use_auth_token,
82
+ )
83
+ if self.do_train:
84
+ if "train" not in dataset:
85
+ raise ValueError("Training requires a training dataset")
86
+ self.train_dataset = dataset["train"]
87
+ if self.max_train_samples is not None:
88
+ self.train_dataset = (
89
+ self.train_dataset.take(self.max_train_samples)
90
+ if self.streaming
91
+ else self.train_dataset.select(range(self.max_train_samples))
92
+ )
93
+ if self.do_eval:
94
+ if "validation" not in dataset:
95
+ raise ValueError("Evaluating requires a validation dataset")
96
+ self.eval_dataset = dataset["validation"]
97
+ if self.max_eval_samples is not None:
98
+ self.eval_dataset = (
99
+ self.eval_dataset.take(self.max_eval_samples)
100
+ if self.streaming
101
+ else self.eval_dataset.select(range(self.max_eval_samples))
102
+ )
103
+
104
+ def preprocess(self, tokenizer, config):
105
+ # get required config variables
106
+ decoder_start_token_id = config.decoder_start_token_id
107
+ normalize_text = config.normalize_text
108
+ max_length = config.max_text_length
109
+
110
+ if self.streaming:
111
+ # we need to shuffle early in streaming mode
112
+ if hasattr(self, "train_dataset"):
113
+ self.train_dataset = self.train_dataset.shuffle(
114
+ buffer_size=5000, seed=self.seed_dataset
115
+ )
116
+ else:
117
+ self.rng_dataset = jax.random.PRNGKey(self.seed_dataset)
118
+
119
+ # filter data
120
+ partial_filter_function = partial(
121
+ filter_function,
122
+ filter_column=self.filter_column,
123
+ filter_value=self.filter_value,
124
+ clip_score_column=self.clip_score_column,
125
+ min_clip_score=self.min_clip_score,
126
+ max_clip_score=self.max_clip_score,
127
+ )
128
+ for ds in ["train_dataset", "eval_dataset"]:
129
+ if hasattr(self, ds):
130
+ setattr(
131
+ self,
132
+ ds,
133
+ (
134
+ getattr(self, ds).filter(partial_filter_function)
135
+ if self.streaming
136
+ else getattr(self, ds).filter(
137
+ partial_filter_function,
138
+ num_proc=self.preprocessing_num_workers,
139
+ load_from_cache_file=not self.overwrite_cache,
140
+ desc="Filtering datasets",
141
+ )
142
+ ),
143
+ )
144
+
145
+ # normalize text
146
+ if normalize_text:
147
+ text_normalizer = TextNormalizer()
148
+ partial_normalize_function = partial(
149
+ normalize_function,
150
+ text_column=self.text_column,
151
+ text_normalizer=text_normalizer,
152
+ )
153
+ for ds in ["train_dataset", "eval_dataset"]:
154
+ if hasattr(self, ds):
155
+ setattr(
156
+ self,
157
+ ds,
158
+ (
159
+ getattr(self, ds).map(partial_normalize_function)
160
+ if self.streaming
161
+ else getattr(self, ds).map(
162
+ partial_normalize_function,
163
+ num_proc=self.preprocessing_num_workers,
164
+ load_from_cache_file=not self.overwrite_cache,
165
+ desc="Normalizing datasets",
166
+ )
167
+ ),
168
+ )
169
+
170
+ # blank captions
171
+ if self.blank_caption_prob:
172
+ partial_blank_caption_function = partial(
173
+ blank_caption_function,
174
+ text_column=self.text_column,
175
+ blank_caption_prob=self.blank_caption_prob,
176
+ )
177
+ if hasattr(self, "train_dataset"):
178
+ self.train_dataset = (
179
+ self.train_dataset.map(partial_blank_caption_function)
180
+ if self.streaming
181
+ else self.train_dataset.map(
182
+ partial_blank_caption_function,
183
+ num_proc=self.preprocessing_num_workers,
184
+ load_from_cache_file=False,
185
+ desc="Blanking some captions",
186
+ )
187
+ )
188
+
189
+ # preprocess
190
+ partial_preprocess_function = partial(
191
+ preprocess_function,
192
+ tokenizer=tokenizer,
193
+ text_column=self.text_column,
194
+ encoding_column=self.encoding_column,
195
+ max_length=max_length,
196
+ decoder_start_token_id=decoder_start_token_id,
197
+ )
198
+ for ds in ["train_dataset", "eval_dataset"]:
199
+ if hasattr(self, ds):
200
+ setattr(
201
+ self,
202
+ ds,
203
+ (
204
+ getattr(self, ds).map(
205
+ partial_preprocess_function,
206
+ batched=True,
207
+ remove_columns=[
208
+ self.text_column,
209
+ self.encoding_column,
210
+ ],
211
+ )
212
+ if self.streaming
213
+ else getattr(self, ds).map(
214
+ partial_preprocess_function,
215
+ batched=True,
216
+ remove_columns=getattr(ds, "column_names"),
217
+ num_proc=self.preprocessing_num_workers,
218
+ load_from_cache_file=not self.overwrite_cache,
219
+ desc="Preprocessing datasets",
220
+ )
221
+ ),
222
+ )
223
+
224
+ def dataloader(self, split, batch_size, epoch=None):
225
+ def _dataloader_datasets_non_streaming(
226
+ dataset: Dataset,
227
+ rng: jax.random.PRNGKey = None,
228
+ ):
229
+ """
230
+ Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices.
231
+ Shuffle batches if rng is set.
232
+ """
233
+ steps_per_epoch = len(dataset) // batch_size
234
+
235
+ if rng is not None:
236
+ batch_idx = jax.random.permutation(rng, len(dataset))
237
+ else:
238
+ batch_idx = jnp.arange(len(dataset))
239
+
240
+ batch_idx = batch_idx[
241
+ : steps_per_epoch * batch_size
242
+ ] # Skip incomplete batch.
243
+ batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))
244
+
245
+ for idx in batch_idx:
246
+ batch = dataset[idx]
247
+ batch = {k: jnp.array(v) for k, v in batch.items()}
248
+ yield batch
249
+
250
+ def _dataloader_datasets_streaming(
251
+ dataset: Dataset,
252
+ epoch: int,
253
+ ):
254
+ keys = ["input_ids", "attention_mask", "labels", "decoder_input_ids"]
255
+ batch = {k: [] for k in keys}
256
+ first_loop = True # stop after one loop in some cases
257
+ while (self.multi_hosts and split == "train") or first_loop:
258
+ # in multi-host, we run forever (no epoch) as hosts need to stop
259
+ # at the same time and training data may not be split equally
260
+ # For validation data we put the entire batch on each host and then
261
+ # keep only the one specific to each host (could be improved but not necessary)
262
+ if epoch is not None:
263
+ assert split == "train"
264
+ # reshuffle training data at each epoch
265
+ dataset.set_epoch(epoch)
266
+ epoch += 1
267
+ for item in dataset:
268
+ for k in keys:
269
+ batch[k].append(item[k])
270
+ if len(batch[keys[0]]) == batch_size:
271
+ batch = {k: jnp.array(v) for k, v in batch.items()}
272
+ yield batch
273
+ batch = {k: [] for k in keys}
274
+ first_loop = False
275
+
276
+ if split == "train":
277
+ ds = self.train_dataset
278
+ elif split == "eval":
279
+ ds = self.eval_dataset
280
+ else:
281
+ raise ValueError(f'split must be "train" or "eval", got {split}')
282
+
283
+ if self.streaming:
284
+ return _dataloader_datasets_streaming(ds, epoch)
285
+ else:
286
+ if split == "train":
287
+ self.rng_dataset, input_rng = jax.random.split(self.rng_dataset)
288
+ return _dataloader_datasets_non_streaming(ds, input_rng)
289
+
290
+ @property
291
+ def length(self):
292
+ len_train_dataset, len_eval_dataset = None, None
293
+ if self.streaming:
294
+ # we don't know the length, let's just assume max_samples if defined
295
+ if self.max_train_samples is not None:
296
+ len_train_dataset = self.max_train_samples
297
+ if self.max_eval_samples is not None:
298
+ len_eval_dataset = self.max_eval_samples
299
+ else:
300
+ len_train_dataset = (
301
+ len(self.train_dataset) if hasattr(self, "train_dataset") else None
302
+ )
303
+ len_eval_dataset = (
304
+ len(self.eval_dataset) if hasattr(self, "eval_dataset") else None
305
+ )
306
+ return len_train_dataset, len_eval_dataset
307
+
308
+
309
+ def shift_tokens_right(input_ids: np.array, decoder_start_token_id: int):
310
+ """
311
+ Shift input ids one token to the right.
312
+ """
313
+ shifted_input_ids = np.zeros(input_ids.shape)
314
+ shifted_input_ids[:, 1:] = input_ids[:, :-1]
315
+ shifted_input_ids[:, 0] = decoder_start_token_id
316
+ return shifted_input_ids
317
+
318
+
319
+ def blank_caption_function(example, text_column, blank_caption_prob):
320
+ if blank_caption_prob and np.random.rand() < blank_caption_prob:
321
+ example[text_column] = ""
322
+ return example
323
+
324
+
325
+ def normalize_function(example, text_column, text_normalizer):
326
+ example[text_column] = text_normalizer(example[text_column])
327
+ return example
328
+
329
+
330
+ def filter_function(
331
+ example,
332
+ min_clip_score,
333
+ max_clip_score,
334
+ clip_score_column,
335
+ filter_column,
336
+ filter_value,
337
+ ):
338
+ if min_clip_score is not None and example[clip_score_column] < min_clip_score:
339
+ return False
340
+ if max_clip_score is not None and example[clip_score_column] > max_clip_score:
341
+ return False
342
+ if filter_column is not None and example[filter_column] != filter_value:
343
+ return False
344
+ return True
345
+
346
+
347
+ def preprocess_function(
348
+ examples,
349
+ tokenizer,
350
+ text_column,
351
+ encoding_column,
352
+ max_length,
353
+ decoder_start_token_id,
354
+ ):
355
+ inputs = examples[text_column]
356
+ # Setting padding="max_length" as we need fixed length inputs for jitted functions
357
+ model_inputs = tokenizer(
358
+ inputs,
359
+ max_length=max_length,
360
+ padding="max_length",
361
+ truncation=True,
362
+ return_tensors="np",
363
+ )
364
+
365
+ # set up targets
366
+ # Note: labels correspond to our target indices
367
+ # decoder input ids are the same but shifted to the right with bos at the beginning (and without last token)
368
+ labels = examples[encoding_column]
369
+ labels = np.asarray(labels)
370
+
371
+ # We need the labels, in addition to the decoder_input_ids, for the compute_loss function
372
+ model_inputs["labels"] = labels
373
+
374
+ # In our case, this prepends the bos token and removes the last one
375
+ decoder_input_ids = shift_tokens_right(labels, decoder_start_token_id)
376
+ model_inputs["decoder_input_ids"] = decoder_input_ids
377
+
378
+ return model_inputs
src/dalle_mini/model/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from .configuration import DalleBartConfig
2
+ from .modeling import DalleBart
3
+ from .partitions import set_partitions
4
+ from .processor import DalleBartProcessor
5
+ from .tokenizer import DalleBartTokenizer
src/dalle_mini/model/configuration.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ DalleBart model configuration """
16
+ import warnings
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ from .utils import PretrainedFromWandbMixin
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+
26
+ class DalleBartConfig(PretrainedFromWandbMixin, PretrainedConfig):
27
+ model_type = "dallebart"
28
+ keys_to_ignore_at_inference = ["past_key_values"]
29
+ attribute_map = {
30
+ "num_attention_heads": "encoder_attention_heads",
31
+ "hidden_size": "d_model",
32
+ }
33
+
34
+ def __init__(
35
+ self,
36
+ normalize_text=False,
37
+ encoder_vocab_size=50264,
38
+ image_vocab_size=16384, # encoded image token space
39
+ image_length=256, # number of encoded tokens
40
+ max_text_length=64, # max number of text tokens
41
+ encoder_layers=12,
42
+ encoder_ffn_dim=4096,
43
+ encoder_attention_heads=16,
44
+ decoder_layers=12,
45
+ decoder_ffn_dim=4096,
46
+ decoder_attention_heads=16,
47
+ activation_function="gelu",
48
+ d_model=1024,
49
+ dropout=0.1,
50
+ attention_dropout=0.0,
51
+ activation_dropout=0.0,
52
+ init_std=0.02,
53
+ scale_embedding=False,
54
+ gradient_checkpointing=False,
55
+ use_cache=True,
56
+ is_encoder_decoder=True,
57
+ forced_eos_token_id=None,
58
+ tie_word_embeddings=False, # different modalities and sizes
59
+ do_sample=True,
60
+ # transformer variants
61
+ use_bias=False, # use bias in attention and dense layers (except for lm_head)
62
+ ln_type="layernorm", # layer normalization type, "rmsnorm", "layernorm"
63
+ ln_positions="normformer", # layer normalization positions, "normformer", "swinv2", "cogview", "postln", "preln", "deepnet" (same as postln)
64
+ use_head_scale=False, # used in NormFormer
65
+ use_cosine_attention=False, # used in Swin v2
66
+ tau_init=0.05, # used only in cosine attention (Swin v2)
67
+ use_absolute_position_embeddings=True, # default
68
+ use_swin_position_embeddings=False, # used in Swin v1/v2
69
+ use_deepnet_scaling=False, # used in Deepnet
70
+ use_glu=False, # "GLU Variants Improve Transformer"
71
+ use_alibi=False, # Not implemented yet - from "Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation"
72
+ sinkhorn_iters=1, # used in SinkFormers
73
+ use_final_ln_encoder=True, # final layer normalization in encoder
74
+ use_final_ln_decoder=True, # final layer normalization in decoder
75
+ # parameters that should not be necessary but could affect results
76
+ force_ln_scale=False, # force scale in layernorm even when followed by dense layers
77
+ **kwargs,
78
+ ):
79
+ # text normalizer
80
+ self.normalize_text = normalize_text
81
+
82
+ # transformer variants
83
+ self.use_bias = use_bias
84
+ assert ln_type in [
85
+ "rmsnorm",
86
+ "layernorm",
87
+ ], "ln_type must be 'rmsnorm' or 'layernorm'"
88
+ self.ln_type = ln_type
89
+ if ln_positions == "deepnet":
90
+ ln_positions = "postln"
91
+ assert ln_positions in [
92
+ "normformer",
93
+ "swinv2",
94
+ "cogview",
95
+ "postln",
96
+ "preln",
97
+ ], "ln_positions must be 'normformer', 'swinv2', 'cogview', 'postln', 'preln'"
98
+ self.use_head_scale = use_head_scale
99
+ assert use_alibi is False, "use_alibi is not supported yet"
100
+ self.ln_positions = ln_positions
101
+ self.use_cosine_attention = use_cosine_attention
102
+ self.tau_init = tau_init
103
+ self.use_absolute_position_embeddings = use_absolute_position_embeddings
104
+ self.use_swin_position_embeddings = use_swin_position_embeddings
105
+ self.use_deepnet_scaling = use_deepnet_scaling
106
+ self.use_glu = use_glu
107
+ self.use_alibi = use_alibi
108
+ self.sinkhorn_iters = sinkhorn_iters
109
+ if ln_positions == "postln":
110
+ assert (
111
+ use_final_ln_encoder
112
+ ), "use_final_ln_encoder must be True when ln_positions is 'postln'"
113
+ assert (
114
+ use_final_ln_decoder
115
+ ), "use_final_ln_decoder must be True when ln_positions is 'postln'"
116
+ self.use_final_ln_encoder = use_final_ln_encoder
117
+ self.use_final_ln_decoder = use_final_ln_decoder
118
+ self.force_ln_scale = force_ln_scale
119
+
120
+ # common parameters
121
+ self.encoder_vocab_size = encoder_vocab_size
122
+ self.image_vocab_size = image_vocab_size
123
+ self.image_length = image_length
124
+ self.max_text_length = max_text_length
125
+ self.d_model = d_model
126
+ self.encoder_ffn_dim = encoder_ffn_dim
127
+ self.encoder_layers = encoder_layers
128
+ self.encoder_attention_heads = encoder_attention_heads
129
+ self.decoder_ffn_dim = decoder_ffn_dim
130
+ self.decoder_layers = decoder_layers
131
+ self.decoder_attention_heads = decoder_attention_heads
132
+ self.dropout = dropout
133
+ self.attention_dropout = attention_dropout
134
+ self.activation_dropout = activation_dropout
135
+ self.activation_function = activation_function
136
+ self.init_std = init_std
137
+ self.use_cache = use_cache
138
+ self.gradient_checkpointing = gradient_checkpointing
139
+ self.scale_embedding = (
140
+ scale_embedding # scale factor will be sqrt(d_model) if True
141
+ )
142
+
143
+ # special token id's are appended to vocab if not provided
144
+ decoder_start_token_id = kwargs.pop("decoder_start_token_id", image_vocab_size)
145
+ bos_token_id = kwargs.pop("bos_token_id", image_vocab_size)
146
+ pad_token_id = kwargs.pop("pad_token_id", image_vocab_size)
147
+ eos_token_id = kwargs.pop("eos_token_id", image_vocab_size)
148
+
149
+ # we generate to image_length + 1 (for bos) by default
150
+ min_length = kwargs.pop("min_length", image_length + 1)
151
+ max_length = kwargs.pop("max_length", image_length + 1)
152
+
153
+ super().__init__(
154
+ # args required in parent class
155
+ is_encoder_decoder=is_encoder_decoder,
156
+ tie_word_embeddings=tie_word_embeddings,
157
+ forced_eos_token_id=forced_eos_token_id,
158
+ decoder_start_token_id=decoder_start_token_id,
159
+ bos_token_id=bos_token_id,
160
+ pad_token_id=pad_token_id,
161
+ eos_token_id=eos_token_id,
162
+ min_length=min_length,
163
+ max_length=max_length,
164
+ do_sample=do_sample,
165
+ **kwargs,
166
+ )
167
+
168
+ # ensure backward compatibility for BART CNN models
169
+ if self.forced_bos_token_id is None and kwargs.get(
170
+ "force_bos_token_to_be_generated", False
171
+ ):
172
+ self.forced_bos_token_id = self.bos_token_id
173
+ warnings.warn(
174
+ f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions."
175
+ "The config can simply be saved and uploaded again to be fixed."
176
+ )
src/dalle_mini/model/modeling.py ADDED
@@ -0,0 +1,2093 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021-2022 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team and & DALL·E Mini team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ DalleBart model. """
16
+
17
+ import math
18
+ import os
19
+ from functools import partial
20
+ from pickle import UnpicklingError
21
+ from typing import Any, Dict, Optional, Tuple, Union
22
+
23
+ import flax
24
+ import flax.linen as nn
25
+ import jax
26
+ import jax.numpy as jnp
27
+ import msgpack.exceptions
28
+ from einops import rearrange
29
+ from flax.core.frozen_dict import unfreeze
30
+ from flax.linen import combine_masks, make_causal_mask
31
+ from flax.linen import partitioning as nn_partitioning
32
+ from flax.linen.linear import PrecisionLike
33
+ from flax.serialization import from_bytes
34
+ from flax.traverse_util import flatten_dict, unflatten_dict
35
+ from jax import custom_jvp, lax
36
+ from jax.random import PRNGKey
37
+ from transformers.configuration_utils import PretrainedConfig
38
+ from transformers.file_utils import (
39
+ FLAX_WEIGHTS_NAME,
40
+ WEIGHTS_NAME,
41
+ cached_path,
42
+ hf_bucket_url,
43
+ is_offline_mode,
44
+ is_remote_url,
45
+ )
46
+ from transformers.generation_flax_utils import FlaxSampleOutput
47
+ from transformers.modeling_flax_outputs import (
48
+ FlaxBaseModelOutput,
49
+ FlaxBaseModelOutputWithPastAndCrossAttentions,
50
+ FlaxCausalLMOutputWithCrossAttentions,
51
+ FlaxSeq2SeqLMOutput,
52
+ )
53
+ from transformers.modeling_flax_utils import ACT2FN
54
+ from transformers.models.bart.modeling_flax_bart import (
55
+ FlaxBartAttention,
56
+ FlaxBartForConditionalGeneration,
57
+ FlaxBartForConditionalGenerationModule,
58
+ FlaxBartModule,
59
+ FlaxBartPreTrainedModel,
60
+ )
61
+ from transformers.utils import logging
62
+
63
+ from .configuration import DalleBartConfig
64
+ from .utils import PretrainedFromWandbMixin
65
+
66
+ logger = logging.get_logger(__name__)
67
+
68
+ remat = nn_partitioning.remat
69
+
70
+
71
+ def smelu(beta: Any = 1.0):
72
+ """
73
+ Implementation of "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations"
74
+ https://arxiv.org/abs/2202.06499
75
+ """
76
+
77
+ @custom_jvp
78
+ @jax.jit
79
+ def _smelu(x: Any) -> Any:
80
+ x = jnp.where(x <= -beta, 0.0, x)
81
+ return jnp.where(x >= beta, x, jnp.square(x + beta) / (4 * beta))
82
+
83
+ _smelu.defjvps(
84
+ lambda g, ans, x: lax.select(
85
+ x == -beta,
86
+ lax.full_like(g, 0),
87
+ lax.select(x == beta, lax.full_like(g, 1), g),
88
+ )
89
+ )
90
+ return _smelu
91
+
92
+
93
+ ACT2FN.update({"smelu": smelu})
94
+
95
+ # deepnet initialization
96
+ def deepnet_init(gain=1):
97
+ init = jax.nn.initializers.glorot_normal()
98
+
99
+ def _init(*args, **kwargs):
100
+ return gain * init(*args, **kwargs)
101
+
102
+ return _init
103
+
104
+
105
+ # deepnet gain
106
+ deepnet_gain = {
107
+ "encoder": {
108
+ "alpha": lambda config: 0.81
109
+ * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625,
110
+ "beta": lambda config: 0.87
111
+ * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625,
112
+ },
113
+ "decoder": {
114
+ "alpha": lambda config: (3 * config.decoder_layers) ** 0.25,
115
+ "beta": lambda config: (12 * config.decoder_layers) ** -0.25,
116
+ },
117
+ }
118
+
119
+
120
+ class RMSNorm(nn.Module):
121
+ """
122
+ From "Root Mean Square Layer Normalization" by https://arxiv.org/abs/1910.07467
123
+
124
+ Adapted from flax.linen.LayerNorm
125
+ """
126
+
127
+ epsilon: float = 1e-6
128
+ dtype: Any = jnp.float32
129
+ param_dtype: Any = jnp.float32
130
+ use_scale: bool = True
131
+ scale_init: Any = jax.nn.initializers.ones
132
+
133
+ @nn.compact
134
+ def __call__(self, x):
135
+ reduction_axes = (-1,)
136
+ feature_axes = (-1,)
137
+
138
+ rms_sq = self._compute_rms_sq(x, reduction_axes)
139
+
140
+ return self._normalize(
141
+ self,
142
+ x,
143
+ rms_sq,
144
+ reduction_axes,
145
+ feature_axes,
146
+ self.dtype,
147
+ self.param_dtype,
148
+ self.epsilon,
149
+ self.use_scale,
150
+ self.scale_init,
151
+ )
152
+
153
+ def _compute_rms_sq(self, x, axes):
154
+ x = jnp.asarray(x, jnp.promote_types(jnp.float32, jnp.result_type(x)))
155
+ rms_sq = jnp.mean(jax.lax.square(x), axes)
156
+ return rms_sq
157
+
158
+ def _normalize(
159
+ self,
160
+ mdl,
161
+ x,
162
+ rms_sq,
163
+ reduction_axes,
164
+ feature_axes,
165
+ dtype,
166
+ param_dtype,
167
+ epsilon,
168
+ use_scale,
169
+ scale_init,
170
+ ):
171
+ reduction_axes = nn.normalization._canonicalize_axes(x.ndim, reduction_axes)
172
+ feature_axes = nn.normalization._canonicalize_axes(x.ndim, feature_axes)
173
+ stats_shape = list(x.shape)
174
+ for axis in reduction_axes:
175
+ stats_shape[axis] = 1
176
+ rms_sq = rms_sq.reshape(stats_shape)
177
+ feature_shape = [1] * x.ndim
178
+ reduced_feature_shape = []
179
+ for ax in feature_axes:
180
+ feature_shape[ax] = x.shape[ax]
181
+ reduced_feature_shape.append(x.shape[ax])
182
+ mul = lax.rsqrt(rms_sq + epsilon)
183
+ if use_scale:
184
+ scale = mdl.param(
185
+ "scale", scale_init, reduced_feature_shape, param_dtype
186
+ ).reshape(feature_shape)
187
+ mul *= scale
188
+ y = mul * x
189
+ return jnp.asarray(y, dtype)
190
+
191
+
192
+ def norm(type, *args, **kwargs):
193
+ if type == "rmsnorm":
194
+ return RMSNorm(*args, **kwargs)
195
+ elif type == "layernorm":
196
+ return nn.LayerNorm(*args, **kwargs)
197
+ else:
198
+ raise ValueError(f"Unknown norm type {type}")
199
+
200
+
201
+ def dot_product_attention_weights(
202
+ query: Any,
203
+ key: Any,
204
+ bias: Optional[Any] = None,
205
+ mask: Optional[Any] = None,
206
+ embed_pos: Optional[Any] = None,
207
+ broadcast_dropout: bool = True,
208
+ dropout_rng: Optional[PRNGKey] = None,
209
+ dropout_rate: float = 0.0,
210
+ deterministic: bool = False,
211
+ dtype: Any = jnp.float32,
212
+ precision: PrecisionLike = None,
213
+ sinkhorn_iters: int = 1,
214
+ is_encoder: bool = False,
215
+ ):
216
+ """
217
+ Computes dot-product attention weights given query and key.
218
+ mask is included into the bias.
219
+
220
+ Adapted from flax.linen.attention.dot_product_attention_weights"
221
+ """
222
+ assert query.ndim == key.ndim, "q, k must have same rank."
223
+ assert query.shape[:-3] == key.shape[:-3], "q, k batch dims must match."
224
+ assert query.shape[-2] == key.shape[-2], "q, k num_heads must match."
225
+ assert query.shape[-1] == key.shape[-1], "q, k depths must match."
226
+
227
+ # calculate attention matrix
228
+ depth = query.shape[-1]
229
+ query = query / jnp.sqrt(depth).astype(dtype)
230
+ # attn weight shape is (batch..., num_heads, q_length, kv_length)
231
+ attn_weights = jnp.einsum("...qhd,...khd->...hqk", query, key, precision=precision)
232
+
233
+ # apply attention bias: masking, dropout, proximity bias, etc.
234
+ if bias is not None:
235
+ attn_weights = attn_weights + bias
236
+
237
+ # add relative position
238
+ if embed_pos is not None:
239
+ attn_weights = attn_weights + embed_pos
240
+
241
+ # normalize the attention weights
242
+ if not is_encoder or sinkhorn_iters == 1:
243
+ # sinkhorn does not work for causal (leaks info of future tokens into past)
244
+ attn_weights = jax.nn.softmax(attn_weights).astype(dtype)
245
+ else:
246
+ # adapted from https://github.com/lucidrains/sinkhorn-transformer
247
+ for i in range(sinkhorn_iters):
248
+ # when causal, some attn_weights have been set to -inf through bias
249
+ if i % 2 == 0:
250
+ attn_weights -= jax.nn.logsumexp(attn_weights, axis=-1, keepdims=True)
251
+ else:
252
+ attn_weights -= jax.nn.logsumexp(attn_weights, axis=-2, keepdims=True)
253
+ if mask is not None:
254
+ attn_weights = jnp.where(mask, attn_weights, -jnp.inf)
255
+ attn_weights = jnp.exp(attn_weights).astype(dtype)
256
+
257
+ # apply attention dropout
258
+ if not deterministic and dropout_rate > 0.0:
259
+ keep_prob = 1.0 - dropout_rate
260
+ if broadcast_dropout:
261
+ # dropout is broadcast across the batch + head dimensions
262
+ dropout_shape = tuple([1] * (key.ndim - 2)) + attn_weights.shape[-2:]
263
+ keep = jax.random.bernoulli(dropout_rng, keep_prob, dropout_shape)
264
+ else:
265
+ keep = jax.random.bernoulli(dropout_rng, keep_prob, attn_weights.shape)
266
+ multiplier = keep.astype(attn_weights.dtype) / jnp.asarray(
267
+ keep_prob, dtype=dtype
268
+ )
269
+ attn_weights = attn_weights * multiplier
270
+
271
+ return attn_weights
272
+
273
+
274
+ class FlaxBartAttention(FlaxBartAttention):
275
+ """
276
+ Edits:
277
+ - causal mask is used only in decoder and considers image_length
278
+ - scale attention heads per NormFormer paper
279
+ """
280
+
281
+ is_encoder: bool = False
282
+ q_length: int = None
283
+ k_length: int = None
284
+
285
+ def setup(self) -> None:
286
+ self.head_dim = self.embed_dim // self.num_heads
287
+ if self.head_dim * self.num_heads != self.embed_dim:
288
+ raise ValueError(
289
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
290
+ f" and `num_heads`: {self.num_heads})."
291
+ )
292
+
293
+ dense = partial(
294
+ nn.Dense,
295
+ self.embed_dim,
296
+ use_bias=self.bias,
297
+ dtype=self.dtype,
298
+ )
299
+
300
+ gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"](
301
+ self.config
302
+ )
303
+
304
+ self.q_proj = dense(
305
+ kernel_init=deepnet_init()
306
+ if self.config.use_deepnet_scaling
307
+ else jax.nn.initializers.normal(self.config.init_std)
308
+ )
309
+ self.k_proj = dense(
310
+ kernel_init=deepnet_init()
311
+ if self.config.use_deepnet_scaling
312
+ else jax.nn.initializers.normal(self.config.init_std)
313
+ )
314
+ self.v_proj = dense(
315
+ kernel_init=deepnet_init(gain)
316
+ if self.config.use_deepnet_scaling
317
+ else jax.nn.initializers.normal(self.config.init_std)
318
+ )
319
+ self.out_proj = dense(
320
+ kernel_init=deepnet_init(gain)
321
+ if self.config.use_deepnet_scaling
322
+ else jax.nn.initializers.normal(self.config.init_std)
323
+ )
324
+ self.dropout_layer = nn.Dropout(rate=self.dropout)
325
+
326
+ if self.config.use_head_scale:
327
+ self.head_scale = self.param(
328
+ "head_scale", jax.nn.initializers.ones, (1, 1, self.num_heads, 1)
329
+ )
330
+
331
+ if self.config.use_cosine_attention:
332
+ self.tau = self.param(
333
+ "tau",
334
+ jax.nn.initializers.constant(self.config.tau_init),
335
+ (1, self.num_heads, 1, 1),
336
+ )
337
+
338
+ if self.config.use_swin_position_embeddings:
339
+ self.rel_bias = nn.Embed(
340
+ self.q_length,
341
+ self.k_length * self.num_heads,
342
+ embedding_init=deepnet_init()
343
+ if self.config.use_deepnet_scaling
344
+ else jax.nn.initializers.normal(self.config.init_std),
345
+ )
346
+
347
+ if self.causal:
348
+ # used only in decoder
349
+ self.causal_mask = make_causal_mask(
350
+ jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool"
351
+ )
352
+
353
+ def __call__(
354
+ self,
355
+ hidden_states: jnp.ndarray,
356
+ key_value_states: Optional[jnp.ndarray] = None,
357
+ attention_mask: Optional[jnp.ndarray] = None,
358
+ init_cache: bool = False,
359
+ deterministic: bool = True,
360
+ ) -> Tuple[jnp.ndarray]:
361
+ """Input shape: Batch x Time x Channel"""
362
+
363
+ # if key_value_states are provided this layer is used as a cross-attention layer
364
+ # for the decoder
365
+ is_cross_attention = key_value_states is not None
366
+ batch_size = hidden_states.shape[0]
367
+
368
+ # get query proj
369
+ query_states = self.q_proj(hidden_states)
370
+ # get key, value proj
371
+ if is_cross_attention:
372
+ # cross_attentions
373
+ key_states = self.k_proj(key_value_states)
374
+ value_states = self.v_proj(key_value_states)
375
+ else:
376
+ # self_attention
377
+ key_states = self.k_proj(hidden_states)
378
+ value_states = self.v_proj(hidden_states)
379
+
380
+ query_states = self._split_heads(query_states)
381
+ key_states = self._split_heads(key_states)
382
+ value_states = self._split_heads(value_states)
383
+
384
+ # handle cache prepare causal attention mask
385
+ if self.causal:
386
+ query_length, key_length = query_states.shape[1], key_states.shape[1]
387
+ if self.has_variable("cache", "cached_key"):
388
+ mask_shift = self.variables["cache"]["cache_index"]
389
+ max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
390
+ causal_mask = lax.dynamic_slice(
391
+ self.causal_mask,
392
+ (0, 0, mask_shift, 0),
393
+ (1, 1, query_length, max_decoder_length),
394
+ )
395
+ else:
396
+ causal_mask = self.causal_mask[:, :, :query_length, :key_length]
397
+ causal_mask = jnp.broadcast_to(
398
+ causal_mask, (batch_size,) + causal_mask.shape[1:]
399
+ )
400
+
401
+ # combine masks if needed
402
+ if attention_mask is not None and self.causal:
403
+ attention_mask = jnp.broadcast_to(
404
+ jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape
405
+ )
406
+ attention_mask = combine_masks(attention_mask, causal_mask)
407
+ elif self.causal:
408
+ attention_mask = causal_mask
409
+ elif attention_mask is not None:
410
+ attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
411
+
412
+ # During fast autoregressive decoding, we feed one position at a time,
413
+ # and cache the keys and values step by step.
414
+ if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
415
+ key_states, value_states, attention_mask = self._concatenate_to_cache(
416
+ key_states, value_states, query_states, attention_mask
417
+ )
418
+
419
+ # Convert the boolean attention mask to an attention bias.
420
+ if attention_mask is not None:
421
+ # attention mask in the form of attention bias
422
+ attention_bias = lax.select(
423
+ attention_mask > 0,
424
+ jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
425
+ jnp.full(attention_mask.shape, -jnp.inf).astype(self.dtype),
426
+ )
427
+ else:
428
+ attention_bias = None
429
+
430
+ dropout_rng = None
431
+ if not deterministic and self.dropout > 0.0:
432
+ dropout_rng = self.make_rng("dropout")
433
+
434
+ if self.config.use_cosine_attention:
435
+ # normalize q and k
436
+ query_states = query_states / (
437
+ jnp.linalg.norm(query_states, axis=-1, keepdims=True) + 1e-8
438
+ )
439
+ key_states = key_states / (
440
+ jnp.linalg.norm(key_states, axis=-1, keepdims=True) + 1e-8
441
+ )
442
+
443
+ # relative position embeddings
444
+ if self.config.use_swin_position_embeddings:
445
+ position_ids = jnp.arange(self.q_length)
446
+ embed_pos = self.rel_bias(position_ids)
447
+ embed_pos = rearrange(embed_pos, "q (k h) -> 1 h q k", h=self.num_heads)
448
+ else:
449
+ embed_pos = None
450
+
451
+ attn_weights = dot_product_attention_weights(
452
+ query_states,
453
+ key_states,
454
+ bias=attention_bias,
455
+ mask=attention_mask,
456
+ embed_pos=embed_pos,
457
+ dropout_rng=dropout_rng,
458
+ dropout_rate=self.dropout,
459
+ broadcast_dropout=True,
460
+ deterministic=deterministic,
461
+ dtype=self.dtype,
462
+ precision=None,
463
+ sinkhorn_iters=self.config.sinkhorn_iters,
464
+ is_encoder=self.is_encoder,
465
+ )
466
+ if self.config.use_cosine_attention:
467
+ # divide by tau
468
+ attn_weights = attn_weights / jnp.maximum(self.tau, 0.01)
469
+
470
+ attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
471
+ if self.config.use_head_scale:
472
+ # per Normformer
473
+ attn_output = attn_output * self.head_scale
474
+ attn_output = self._merge_heads(attn_output)
475
+ attn_output = self.out_proj(attn_output)
476
+
477
+ return attn_output, attn_weights
478
+
479
+
480
+ class GLU(nn.Module):
481
+ """From "GLU Variants Improve Transformer" by https://arxiv.org/abs/2002.05202"""
482
+
483
+ config: DalleBartConfig
484
+ ffn_dim: int
485
+ embed_dim: int
486
+ dtype: jnp.dtype = jnp.float32
487
+ is_encoder: bool = False
488
+
489
+ @nn.compact
490
+ def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
491
+
492
+ gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"](
493
+ self.config
494
+ )
495
+
496
+ if self.config.ln_positions in ["normformer", "cogview", "preln"]:
497
+ x = norm(
498
+ self.config.ln_type,
499
+ dtype=self.dtype,
500
+ epsilon=1e-05,
501
+ use_scale=self.config.force_ln_scale,
502
+ )(x)
503
+ w = nn.Dense(
504
+ self.ffn_dim,
505
+ dtype=self.dtype,
506
+ use_bias=self.config.use_bias,
507
+ kernel_init=deepnet_init(gain)
508
+ if self.config.use_deepnet_scaling
509
+ else jax.nn.initializers.normal(self.config.init_std),
510
+ )(x)
511
+ w = ACT2FN[self.config.activation_function](w)
512
+ v = nn.Dense(
513
+ self.ffn_dim,
514
+ dtype=self.dtype,
515
+ use_bias=self.config.use_bias,
516
+ kernel_init=deepnet_init(gain)
517
+ if self.config.use_deepnet_scaling
518
+ else jax.nn.initializers.normal(self.config.init_std),
519
+ )(x)
520
+ x = w * v
521
+ if self.config.ln_positions in ["normformer"]:
522
+ x = norm(
523
+ self.config.ln_type,
524
+ dtype=self.dtype,
525
+ epsilon=1e-05,
526
+ use_scale=self.config.force_ln_scale,
527
+ )(x)
528
+ x = nn.Dropout(rate=self.config.activation_dropout)(
529
+ x, deterministic=deterministic
530
+ )
531
+
532
+ x = nn.Dense(
533
+ self.embed_dim,
534
+ dtype=self.dtype,
535
+ use_bias=self.config.use_bias,
536
+ kernel_init=deepnet_init(gain)
537
+ if self.config.use_deepnet_scaling
538
+ else jax.nn.initializers.normal(self.config.init_std),
539
+ )(x)
540
+ if self.config.ln_positions in ["swinv2", "cogview"]:
541
+ x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x)
542
+ x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic)
543
+ return x
544
+
545
+
546
+ class FFN(nn.Module):
547
+ """Simple FFN layer"""
548
+
549
+ config: DalleBartConfig
550
+ ffn_dim: int
551
+ embed_dim: int
552
+ dtype: jnp.dtype = jnp.float32
553
+ is_encoder: bool = False
554
+
555
+ @nn.compact
556
+ def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
557
+
558
+ gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"](
559
+ self.config
560
+ )
561
+ if self.config.ln_positions in ["normformer", "cogview", "preln"]:
562
+ x = norm(
563
+ self.config.ln_type,
564
+ dtype=self.dtype,
565
+ epsilon=1e-05,
566
+ use_scale=self.config.force_ln_scale,
567
+ )(x)
568
+ x = nn.Dense(
569
+ self.ffn_dim,
570
+ dtype=self.dtype,
571
+ use_bias=self.config.use_bias,
572
+ kernel_init=deepnet_init(gain)
573
+ if self.config.use_deepnet_scaling
574
+ else jax.nn.initializers.normal(self.config.init_std),
575
+ )(x)
576
+ x = ACT2FN[self.config.activation_function](x)
577
+ if self.config.ln_positions in ["normformer"]:
578
+ x = norm(
579
+ self.config.ln_type,
580
+ dtype=self.dtype,
581
+ epsilon=1e-05,
582
+ use_scale=self.config.force_ln_scale,
583
+ )(x)
584
+ x = nn.Dropout(rate=self.config.activation_dropout)(
585
+ x, deterministic=deterministic
586
+ )
587
+ x = nn.Dense(
588
+ self.embed_dim,
589
+ dtype=self.dtype,
590
+ use_bias=self.config.use_bias,
591
+ kernel_init=deepnet_init(gain)
592
+ if self.config.use_deepnet_scaling
593
+ else jax.nn.initializers.normal(self.config.init_std),
594
+ )(x)
595
+ if self.config.ln_positions in ["swinv2", "cogview"]:
596
+ x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x)
597
+ x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic)
598
+ return x
599
+
600
+
601
+ class FlaxBartEncoderLayer(nn.Module):
602
+ """
603
+ Edits:
604
+ - no bias
605
+ - use custom FlaxBartAttention
606
+ """
607
+
608
+ config: DalleBartConfig
609
+ dtype: jnp.dtype = jnp.float32
610
+ add_norm: bool = False
611
+ use_scale: bool = True
612
+
613
+ @nn.compact
614
+ def __call__(
615
+ self,
616
+ hidden_states: jnp.ndarray,
617
+ attention_mask: jnp.ndarray,
618
+ output_attentions: bool = True,
619
+ deterministic: bool = True,
620
+ ) -> Tuple[jnp.ndarray]:
621
+
622
+ res_gain = (
623
+ deepnet_gain["encoder"]["alpha"](self.config)
624
+ if self.config.use_deepnet_scaling
625
+ else 1
626
+ )
627
+
628
+ embed_dim = self.config.d_model
629
+ residual = hidden_states
630
+ if self.config.ln_positions in ["normformer", "cogview", "preln"]:
631
+ hidden_states = norm(
632
+ self.config.ln_type,
633
+ dtype=self.dtype,
634
+ epsilon=1e-05,
635
+ use_scale=self.config.force_ln_scale,
636
+ )(hidden_states)
637
+ hidden_states, attn_weights = FlaxBartAttention(
638
+ config=self.config,
639
+ embed_dim=embed_dim,
640
+ num_heads=self.config.encoder_attention_heads,
641
+ dropout=self.config.attention_dropout,
642
+ bias=self.config.use_bias,
643
+ dtype=self.dtype,
644
+ is_encoder=True,
645
+ q_length=self.config.max_text_length,
646
+ k_length=self.config.max_text_length,
647
+ )(hidden_states=hidden_states, attention_mask=attention_mask)
648
+
649
+ if self.config.ln_positions in ["normformer", "swinv2", "cogview"]:
650
+ hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(
651
+ hidden_states
652
+ )
653
+ hidden_states = nn.Dropout(rate=self.config.dropout)(
654
+ hidden_states, deterministic=deterministic
655
+ )
656
+ hidden_states = residual * res_gain + hidden_states
657
+ if self.config.ln_positions in ["postln"]:
658
+ hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(
659
+ hidden_states
660
+ )
661
+
662
+ residual = hidden_states
663
+ ff_block = (
664
+ GLU(
665
+ config=self.config,
666
+ ffn_dim=self.config.encoder_ffn_dim,
667
+ embed_dim=embed_dim,
668
+ dtype=self.dtype,
669
+ is_encoder=True,
670
+ )
671
+ if self.config.use_glu
672
+ else FFN(
673
+ config=self.config,
674
+ ffn_dim=self.config.encoder_ffn_dim,
675
+ embed_dim=embed_dim,
676
+ dtype=self.dtype,
677
+ is_encoder=True,
678
+ )
679
+ )
680
+ hidden_states = ff_block(hidden_states, deterministic=deterministic)
681
+ hidden_states = residual * res_gain + hidden_states
682
+ if self.add_norm or self.config.ln_positions in ["postln"]:
683
+ use_scale = (
684
+ self.use_scale
685
+ or self.config.ln_positions == "postln"
686
+ or self.config.force_ln_scale
687
+ )
688
+ hidden_states = norm(
689
+ self.config.ln_type,
690
+ dtype=self.dtype,
691
+ epsilon=1e-05,
692
+ use_scale=use_scale,
693
+ )(hidden_states)
694
+
695
+ outputs = (hidden_states,)
696
+
697
+ if output_attentions:
698
+ outputs += (attn_weights,)
699
+
700
+ return outputs
701
+
702
+
703
+ class FlaxBartDecoderLayer(nn.Module):
704
+ """
705
+ Edits:
706
+ - no bias
707
+ - use custom FlaxBartAttention
708
+ """
709
+
710
+ config: DalleBartConfig
711
+ dtype: jnp.dtype = jnp.float32
712
+ add_norm: bool = False
713
+ use_scale: bool = False
714
+
715
+ @nn.compact
716
+ def __call__(
717
+ self,
718
+ hidden_states: jnp.ndarray,
719
+ attention_mask: jnp.ndarray,
720
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
721
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
722
+ init_cache: bool = False,
723
+ output_attentions: bool = True,
724
+ deterministic: bool = True,
725
+ ) -> Tuple[jnp.ndarray]:
726
+
727
+ res_gain = (
728
+ deepnet_gain["decoder"]["alpha"](self.config)
729
+ if self.config.use_deepnet_scaling
730
+ else 1
731
+ )
732
+
733
+ embed_dim = self.config.d_model
734
+ residual = hidden_states
735
+
736
+ # Self Attention
737
+ if self.config.ln_positions in ["normformer", "cogview", "preln"]:
738
+ hidden_states = norm(
739
+ self.config.ln_type,
740
+ dtype=self.dtype,
741
+ epsilon=1e-05,
742
+ use_scale=self.config.force_ln_scale,
743
+ )(hidden_states)
744
+ hidden_states, attn_weights = FlaxBartAttention(
745
+ config=self.config,
746
+ embed_dim=embed_dim,
747
+ num_heads=self.config.decoder_attention_heads,
748
+ dropout=self.config.attention_dropout,
749
+ causal=True,
750
+ bias=self.config.use_bias,
751
+ dtype=self.dtype,
752
+ is_encoder=False,
753
+ q_length=self.config.image_length,
754
+ k_length=self.config.image_length,
755
+ )(
756
+ hidden_states=hidden_states,
757
+ attention_mask=attention_mask,
758
+ init_cache=init_cache,
759
+ )
760
+
761
+ if self.config.ln_positions in ["normformer", "swinv2", "cogview"]:
762
+ hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(
763
+ hidden_states
764
+ )
765
+ hidden_states = nn.Dropout(rate=self.config.dropout)(
766
+ hidden_states, deterministic=deterministic
767
+ )
768
+ hidden_states = residual * res_gain + hidden_states
769
+ if self.config.ln_positions in ["postln"]:
770
+ hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(
771
+ hidden_states
772
+ )
773
+
774
+ # Cross Attention
775
+ cross_attn_weights = None
776
+ if encoder_hidden_states is not None:
777
+ residual = hidden_states
778
+ if self.config.ln_positions in ["normformer", "cogview", "preln"]:
779
+ hidden_states = norm(
780
+ self.config.ln_type,
781
+ dtype=self.dtype,
782
+ epsilon=1e-05,
783
+ use_scale=self.config.force_ln_scale,
784
+ )(hidden_states)
785
+ hidden_states, cross_attn_weights = FlaxBartAttention(
786
+ config=self.config,
787
+ embed_dim=embed_dim,
788
+ num_heads=self.config.decoder_attention_heads,
789
+ dropout=self.config.attention_dropout,
790
+ bias=self.config.use_bias,
791
+ dtype=self.dtype,
792
+ is_encoder=False,
793
+ q_length=self.config.image_length,
794
+ k_length=self.config.max_text_length,
795
+ )(
796
+ hidden_states=hidden_states,
797
+ key_value_states=encoder_hidden_states,
798
+ attention_mask=encoder_attention_mask,
799
+ )
800
+ if self.config.ln_positions in ["normformer", "swinv2", "cogview"]:
801
+ hidden_states = norm(
802
+ self.config.ln_type, dtype=self.dtype, epsilon=1e-05
803
+ )(hidden_states)
804
+ hidden_states = nn.Dropout(rate=self.config.dropout)(
805
+ hidden_states, deterministic=deterministic
806
+ )
807
+ hidden_states = residual * res_gain + hidden_states
808
+ if self.config.ln_positions in ["postln"]:
809
+ hidden_states = norm(
810
+ self.config.ln_type, dtype=self.dtype, epsilon=1e-05
811
+ )(hidden_states)
812
+
813
+ # Feed forward
814
+ residual = hidden_states
815
+ ff_block = (
816
+ GLU(
817
+ config=self.config,
818
+ ffn_dim=self.config.decoder_ffn_dim,
819
+ embed_dim=embed_dim,
820
+ dtype=self.dtype,
821
+ is_encoder=False,
822
+ )
823
+ if self.config.use_glu
824
+ else FFN(
825
+ config=self.config,
826
+ ffn_dim=self.config.decoder_ffn_dim,
827
+ embed_dim=embed_dim,
828
+ dtype=self.dtype,
829
+ is_encoder=False,
830
+ )
831
+ )
832
+ hidden_states = ff_block(hidden_states, deterministic=deterministic)
833
+ hidden_states = residual * res_gain + hidden_states
834
+ if self.add_norm or self.config.ln_positions in ["postln"]:
835
+ use_scale = (
836
+ self.use_scale
837
+ or self.config.ln_positions == "postln"
838
+ or self.config.force_ln_scale
839
+ )
840
+ hidden_states = norm(
841
+ self.config.ln_type,
842
+ dtype=self.dtype,
843
+ epsilon=1e-05,
844
+ use_scale=use_scale,
845
+ )(hidden_states)
846
+
847
+ outputs = (hidden_states,)
848
+
849
+ if output_attentions:
850
+ outputs += (attn_weights, cross_attn_weights)
851
+
852
+ return outputs
853
+
854
+
855
+ class FlaxBartEncoderLayerCollection(nn.Module):
856
+ config: DalleBartConfig
857
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
858
+ """
859
+ Edits:
860
+ - use custom FlaxBartEncoderLayer
861
+ - allow Gradient Checkpointing (nn.remat)
862
+ """
863
+
864
+ @nn.compact
865
+ def __call__(
866
+ self,
867
+ hidden_states,
868
+ attention_mask,
869
+ deterministic: bool = True,
870
+ output_attentions: bool = False,
871
+ output_hidden_states: bool = False,
872
+ return_dict: bool = True,
873
+ ):
874
+ all_hidden_states = () if output_hidden_states else None
875
+ all_self_attns = () if output_attentions else None
876
+
877
+ n_layers = self.config.encoder_layers
878
+ layer = (
879
+ remat(FlaxBartEncoderLayer, static_argnums=(2, 3))
880
+ if self.config.gradient_checkpointing
881
+ else FlaxBartEncoderLayer
882
+ )
883
+ for i in range(n_layers):
884
+ if output_hidden_states:
885
+ all_hidden_states += (hidden_states,)
886
+ # final layernorm on the output of the last layer
887
+ # or every 6 layers for Swin v2
888
+ add_norm = (
889
+ self.config.ln_positions == "swinv2" and ((i + 1) % 6 == 0)
890
+ ) or (self.config.use_final_ln_encoder and (i == n_layers - 1))
891
+ # we don't need to scale the norm for the last layer
892
+ use_scale = i != n_layers - 1
893
+ layer_outputs = layer(
894
+ self.config, dtype=self.dtype, add_norm=add_norm, use_scale=use_scale
895
+ )(
896
+ hidden_states,
897
+ attention_mask,
898
+ output_attentions,
899
+ deterministic,
900
+ )
901
+ hidden_states = layer_outputs[0]
902
+ if output_attentions:
903
+ all_self_attns += (layer_outputs[1],)
904
+
905
+ # add hidden states from the last layer
906
+ if output_hidden_states:
907
+ all_hidden_states += (hidden_states,)
908
+
909
+ outputs = [
910
+ hidden_states,
911
+ all_hidden_states,
912
+ all_self_attns,
913
+ ]
914
+
915
+ if not return_dict:
916
+ return tuple(v for v in outputs if v is not None)
917
+
918
+ return FlaxBaseModelOutput(
919
+ last_hidden_state=hidden_states,
920
+ hidden_states=all_hidden_states,
921
+ attentions=all_self_attns,
922
+ )
923
+
924
+
925
+ class FlaxBartDecoderLayerCollection(nn.Module):
926
+ config: DalleBartConfig
927
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
928
+ """
929
+ Edits:
930
+ - use custom FlaxBartDecoderLayer
931
+ - allow Gradient Checkpointing (nn.remat)
932
+ """
933
+
934
+ @nn.compact
935
+ def __call__(
936
+ self,
937
+ hidden_states,
938
+ attention_mask,
939
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
940
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
941
+ deterministic: bool = True,
942
+ init_cache: bool = False,
943
+ output_attentions: bool = False,
944
+ output_hidden_states: bool = False,
945
+ return_dict: bool = True,
946
+ ):
947
+ # decoder layers
948
+ all_hidden_states = () if output_hidden_states else None
949
+ all_self_attns = () if output_attentions else None
950
+ all_cross_attentions = (
951
+ () if (output_attentions and encoder_hidden_states is not None) else None
952
+ )
953
+
954
+ n_layers = self.config.decoder_layers
955
+ layer = (
956
+ remat(FlaxBartDecoderLayer, static_argnums=(4, 5, 6))
957
+ if self.config.gradient_checkpointing
958
+ else FlaxBartDecoderLayer
959
+ )
960
+ for i in range(n_layers):
961
+ if output_hidden_states:
962
+ all_hidden_states += (hidden_states,)
963
+ # final layernorm on the output of the last layer
964
+ # or every 6 layers for Swin v2
965
+ add_norm = (
966
+ self.config.ln_positions == "swinv2" and ((i + 1) % 6 == 0)
967
+ ) or (self.config.use_final_ln_decoder and (i == n_layers - 1))
968
+ # we don't need to scale the norm for the last layer
969
+ use_scale = i != n_layers - 1
970
+ layer_outputs = layer(
971
+ self.config, dtype=self.dtype, add_norm=add_norm, use_scale=use_scale
972
+ )(
973
+ hidden_states,
974
+ attention_mask,
975
+ encoder_hidden_states,
976
+ encoder_attention_mask,
977
+ init_cache,
978
+ output_attentions,
979
+ deterministic,
980
+ )
981
+
982
+ hidden_states = layer_outputs[0]
983
+ if output_attentions:
984
+ all_self_attns += (layer_outputs[1],)
985
+
986
+ if encoder_hidden_states is not None:
987
+ all_cross_attentions += (layer_outputs[2],)
988
+
989
+ # add hidden states from the last decoder layer
990
+ if output_hidden_states:
991
+ all_hidden_states += (hidden_states,)
992
+
993
+ outputs = [
994
+ hidden_states,
995
+ all_hidden_states,
996
+ all_self_attns,
997
+ all_cross_attentions,
998
+ ]
999
+
1000
+ if not return_dict:
1001
+ return tuple(v for v in outputs if v is not None)
1002
+
1003
+ return FlaxBaseModelOutputWithPastAndCrossAttentions(
1004
+ last_hidden_state=hidden_states,
1005
+ hidden_states=all_hidden_states,
1006
+ attentions=all_self_attns,
1007
+ cross_attentions=all_cross_attentions,
1008
+ )
1009
+
1010
+
1011
+ class FlaxBartEncoder(nn.Module):
1012
+ config: DalleBartConfig
1013
+ embed_tokens: nn.Embed
1014
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
1015
+ """
1016
+ Edits:
1017
+ - offset set to 0 (no padding token)
1018
+ - use max_text_length instead of max_position_embeddings
1019
+ - use custom FlaxBartEncoderLayerCollection
1020
+ - embed_tokens cannot be None (issue at compile time)
1021
+ """
1022
+
1023
+ def setup(self):
1024
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
1025
+
1026
+ embed_dim = self.config.d_model
1027
+ self.padding_idx = self.config.pad_token_id
1028
+ self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
1029
+
1030
+ # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
1031
+ # and adjust num_embeddings appropriately. Other models don't have this hack
1032
+ self.offset = 0
1033
+ if self.config.use_absolute_position_embeddings:
1034
+ self.embed_positions = nn.Embed(
1035
+ self.config.max_text_length + self.offset, # image length for BOS
1036
+ embed_dim,
1037
+ embedding_init=jax.nn.initializers.normal(self.config.init_std),
1038
+ )
1039
+ self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype)
1040
+ self.layernorm_embedding = norm(
1041
+ self.config.ln_type, dtype=self.dtype, epsilon=1e-05
1042
+ )
1043
+
1044
+ def __call__(
1045
+ self,
1046
+ input_ids,
1047
+ attention_mask,
1048
+ position_ids,
1049
+ output_attentions: bool = False,
1050
+ output_hidden_states: bool = False,
1051
+ return_dict: bool = True,
1052
+ deterministic: bool = True,
1053
+ ):
1054
+ input_shape = input_ids.shape
1055
+ input_ids = input_ids.reshape(-1, input_shape[-1])
1056
+
1057
+ hidden_states = self.embed_tokens(input_ids) * self.embed_scale
1058
+
1059
+ if self.config.use_absolute_position_embeddings:
1060
+ embed_pos = self.embed_positions(position_ids + self.offset)
1061
+ hidden_states = hidden_states + embed_pos
1062
+
1063
+ hidden_states = self.layernorm_embedding(hidden_states)
1064
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
1065
+
1066
+ outputs = self.layers(
1067
+ hidden_states,
1068
+ attention_mask,
1069
+ deterministic=deterministic,
1070
+ output_attentions=output_attentions,
1071
+ output_hidden_states=output_hidden_states,
1072
+ return_dict=return_dict,
1073
+ )
1074
+
1075
+ if not return_dict:
1076
+ return outputs
1077
+
1078
+ return FlaxBaseModelOutput(
1079
+ last_hidden_state=outputs.last_hidden_state,
1080
+ hidden_states=outputs.hidden_states,
1081
+ attentions=outputs.attentions,
1082
+ )
1083
+
1084
+
1085
+ class FlaxBartDecoder(nn.Module):
1086
+ config: DalleBartConfig
1087
+ embed_tokens: nn.Embed
1088
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
1089
+ """
1090
+ Edits:
1091
+ - offset set to 0 (no padding token)
1092
+ - use image_length instead of max_position_embeddings
1093
+ - use custom FlaxBartDecoderLayerCollection
1094
+ - embed_tokens cannot be None (issue at compile time)
1095
+ """
1096
+
1097
+ def setup(self):
1098
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
1099
+
1100
+ embed_dim = self.config.d_model
1101
+ self.padding_idx = self.config.pad_token_id
1102
+ self.embed_scale = (
1103
+ math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
1104
+ )
1105
+
1106
+ # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
1107
+ # and adjust num_embeddings appropriately. Other models don't have this hack
1108
+ self.offset = 0
1109
+ if self.config.use_absolute_position_embeddings:
1110
+ self.embed_positions = nn.Embed(
1111
+ self.config.image_length + self.offset, # image length for BOS
1112
+ embed_dim,
1113
+ embedding_init=jax.nn.initializers.normal(self.config.init_std),
1114
+ )
1115
+
1116
+ self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype)
1117
+ self.layernorm_embedding = norm(
1118
+ self.config.ln_type, dtype=self.dtype, epsilon=1e-05
1119
+ )
1120
+
1121
+ def __call__(
1122
+ self,
1123
+ input_ids,
1124
+ attention_mask,
1125
+ position_ids,
1126
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
1127
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
1128
+ init_cache: bool = False,
1129
+ output_attentions: bool = False,
1130
+ output_hidden_states: bool = False,
1131
+ return_dict: bool = True,
1132
+ deterministic: bool = True,
1133
+ ):
1134
+ input_shape = input_ids.shape
1135
+ input_ids = input_ids.reshape(-1, input_shape[-1])
1136
+
1137
+ hidden_states = self.embed_tokens(input_ids) * self.embed_scale
1138
+
1139
+ if self.config.use_absolute_position_embeddings:
1140
+ embed_pos = self.embed_positions(position_ids + self.offset)
1141
+ hidden_states = hidden_states + embed_pos
1142
+
1143
+ hidden_states = self.layernorm_embedding(hidden_states)
1144
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
1145
+
1146
+ outputs = self.layers(
1147
+ hidden_states,
1148
+ attention_mask,
1149
+ encoder_hidden_states,
1150
+ encoder_attention_mask,
1151
+ deterministic=deterministic,
1152
+ init_cache=init_cache,
1153
+ output_attentions=output_attentions,
1154
+ output_hidden_states=output_hidden_states,
1155
+ return_dict=return_dict,
1156
+ )
1157
+
1158
+ if not return_dict:
1159
+ return outputs
1160
+
1161
+ return FlaxBaseModelOutputWithPastAndCrossAttentions(
1162
+ last_hidden_state=outputs.last_hidden_state,
1163
+ hidden_states=outputs.hidden_states,
1164
+ attentions=outputs.attentions,
1165
+ cross_attentions=outputs.cross_attentions,
1166
+ )
1167
+
1168
+
1169
+ class FlaxBartModule(FlaxBartModule):
1170
+ """
1171
+ Edits
1172
+ - use custom FlaxBartEncoder & FlaxBartDecoder
1173
+ - use separate embeddings for Encoder & Decoder
1174
+ """
1175
+
1176
+ def setup(self):
1177
+ encoder_embed_tokens = nn.Embed(
1178
+ self.config.encoder_vocab_size,
1179
+ self.config.d_model,
1180
+ embedding_init=jax.nn.initializers.normal(self.config.init_std),
1181
+ )
1182
+ decoder_embed_tokens = nn.Embed(
1183
+ self.config.image_vocab_size + 1, # image vocab size + 1 for BOS
1184
+ self.config.d_model,
1185
+ embedding_init=jax.nn.initializers.normal(self.config.init_std),
1186
+ )
1187
+
1188
+ self.encoder = FlaxBartEncoder(
1189
+ self.config, dtype=self.dtype, embed_tokens=encoder_embed_tokens
1190
+ )
1191
+ self.decoder = FlaxBartDecoder(
1192
+ self.config, dtype=self.dtype, embed_tokens=decoder_embed_tokens
1193
+ )
1194
+
1195
+
1196
+ class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel):
1197
+ """
1198
+ Edits:
1199
+ - added num_params property
1200
+ - config_class replaced to DalleBartConfig
1201
+ - __init__ accepts abstract_init which does uses parameter shape to initialize the model
1202
+ - init weights on CPU with `load_on_cpu`
1203
+ - restore weights on CPU with custom `from_pretrained`
1204
+ """
1205
+
1206
+ config_class = DalleBartConfig
1207
+
1208
+ def __init__(
1209
+ self,
1210
+ config: DalleBartConfig,
1211
+ input_shape: Tuple[int] = (1, 1),
1212
+ seed: int = 0,
1213
+ dtype: jnp.dtype = jnp.float32,
1214
+ abstract_init: bool = False,
1215
+ load_on_cpu: bool = False,
1216
+ init_weights: bool = True,
1217
+ **kwargs,
1218
+ ):
1219
+ module = self.module_class(config=config, dtype=dtype, **kwargs)
1220
+
1221
+ # adapted from HuggingFace FlaxPreTrainedModel
1222
+ if config is None:
1223
+ raise ValueError("config cannot be None")
1224
+
1225
+ if module is None:
1226
+ raise ValueError("module cannot be None")
1227
+
1228
+ # Those are private to be exposed as typed property on derived classes.
1229
+ self._config = config
1230
+ self._module = module
1231
+
1232
+ # Those are public as their type is generic to every derived classes.
1233
+ self.key = PRNGKey(seed)
1234
+ self.dtype = dtype
1235
+
1236
+ if init_weights:
1237
+ # get shape of params only
1238
+ random_params = self.init_weights(
1239
+ self.key,
1240
+ input_shape,
1241
+ abstract_init=abstract_init,
1242
+ load_on_cpu=load_on_cpu,
1243
+ )
1244
+
1245
+ # save required_params as set
1246
+ self._required_params = set(flatten_dict(unfreeze(random_params)).keys())
1247
+ self.params = random_params
1248
+
1249
+ def init_weights(
1250
+ self, rng=None, input_shape=(1, 1), abstract_init=False, load_on_cpu=False
1251
+ ):
1252
+ if rng is None:
1253
+ rng = self.key
1254
+ init_fn = super().init_weights
1255
+ if load_on_cpu:
1256
+ init_fn = jax.jit(init_fn, static_argnums=(1,), backend="cpu")
1257
+ if abstract_init:
1258
+ # only set shape and dtype, load parameters separately
1259
+ init_fn = partial(init_fn, input_shape=input_shape)
1260
+ params = jax.eval_shape(init_fn, rng)
1261
+ else:
1262
+ params = init_fn(rng, input_shape)
1263
+ return params
1264
+
1265
+ @property
1266
+ def num_params(self):
1267
+ num_params = jax.tree_map(
1268
+ lambda param: param.size, flatten_dict(unfreeze(self.params))
1269
+ ).values()
1270
+ return sum(list(num_params))
1271
+
1272
+ @classmethod
1273
+ def from_pretrained(
1274
+ cls,
1275
+ pretrained_model_name_or_path: Union[str, os.PathLike],
1276
+ dtype: jnp.dtype = jnp.float32,
1277
+ *model_args,
1278
+ **kwargs,
1279
+ ):
1280
+ config = kwargs.pop("config", None)
1281
+ cache_dir = kwargs.pop("cache_dir", None)
1282
+ from_pt = kwargs.pop("from_pt", False)
1283
+ ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
1284
+ force_download = kwargs.pop("force_download", False)
1285
+ resume_download = kwargs.pop("resume_download", False)
1286
+ proxies = kwargs.pop("proxies", None)
1287
+ local_files_only = kwargs.pop("local_files_only", False)
1288
+ use_auth_token = kwargs.pop("use_auth_token", None)
1289
+ revision = kwargs.pop("revision", None)
1290
+ from_pipeline = kwargs.pop("_from_pipeline", None)
1291
+ from_auto_class = kwargs.pop("_from_auto", False)
1292
+
1293
+ user_agent = {
1294
+ "file_type": "model",
1295
+ "framework": "flax",
1296
+ "from_auto_class": from_auto_class,
1297
+ }
1298
+ if from_pipeline is not None:
1299
+ user_agent["using_pipeline"] = from_pipeline
1300
+
1301
+ if is_offline_mode() and not local_files_only:
1302
+ logger.info("Offline mode: forcing local_files_only=True")
1303
+ local_files_only = True
1304
+
1305
+ # Load config if we don't provide a configuration
1306
+ if not isinstance(config, PretrainedConfig):
1307
+ config_path = (
1308
+ config if config is not None else pretrained_model_name_or_path
1309
+ )
1310
+ config, model_kwargs = cls.config_class.from_pretrained(
1311
+ config_path,
1312
+ cache_dir=cache_dir,
1313
+ return_unused_kwargs=True,
1314
+ force_download=force_download,
1315
+ resume_download=resume_download,
1316
+ proxies=proxies,
1317
+ local_files_only=local_files_only,
1318
+ use_auth_token=use_auth_token,
1319
+ revision=revision,
1320
+ _from_auto=from_auto_class,
1321
+ _from_pipeline=from_pipeline,
1322
+ **kwargs,
1323
+ )
1324
+ else:
1325
+ model_kwargs = kwargs
1326
+
1327
+ # Add the dtype to model_kwargs
1328
+ model_kwargs["dtype"] = dtype
1329
+
1330
+ # Load model
1331
+ if pretrained_model_name_or_path is not None:
1332
+ if os.path.isdir(pretrained_model_name_or_path):
1333
+ if from_pt and os.path.isfile(
1334
+ os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
1335
+ ):
1336
+ # Load from a PyTorch checkpoint
1337
+ archive_file = os.path.join(
1338
+ pretrained_model_name_or_path, WEIGHTS_NAME
1339
+ )
1340
+ elif os.path.isfile(
1341
+ os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)
1342
+ ):
1343
+ # Load from a Flax checkpoint
1344
+ archive_file = os.path.join(
1345
+ pretrained_model_name_or_path, FLAX_WEIGHTS_NAME
1346
+ )
1347
+ else:
1348
+ raise EnvironmentError(
1349
+ f"Error no file named {[FLAX_WEIGHTS_NAME, WEIGHTS_NAME]} found in directory "
1350
+ f"{pretrained_model_name_or_path} or `from_pt` set to False"
1351
+ )
1352
+ elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(
1353
+ pretrained_model_name_or_path
1354
+ ):
1355
+ archive_file = pretrained_model_name_or_path
1356
+ else:
1357
+ archive_file = hf_bucket_url(
1358
+ pretrained_model_name_or_path,
1359
+ filename=WEIGHTS_NAME if from_pt else FLAX_WEIGHTS_NAME,
1360
+ revision=revision,
1361
+ )
1362
+
1363
+ # redirect to the cache, if necessary
1364
+ try:
1365
+ resolved_archive_file = cached_path(
1366
+ archive_file,
1367
+ cache_dir=cache_dir,
1368
+ force_download=force_download,
1369
+ proxies=proxies,
1370
+ resume_download=resume_download,
1371
+ local_files_only=local_files_only,
1372
+ use_auth_token=use_auth_token,
1373
+ user_agent=user_agent,
1374
+ )
1375
+ except EnvironmentError as err:
1376
+ logger.error(err)
1377
+ msg = (
1378
+ f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
1379
+ f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n"
1380
+ f" (make sure '{pretrained_model_name_or_path}' is not a path to a local directory with something else, in that case)\n\n"
1381
+ f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named {WEIGHTS_NAME}.\n\n"
1382
+ )
1383
+ raise EnvironmentError(msg)
1384
+
1385
+ if resolved_archive_file == archive_file:
1386
+ logger.info(f"loading weights file {archive_file}")
1387
+ else:
1388
+ logger.info(
1389
+ f"loading weights file {archive_file} from cache at {resolved_archive_file}"
1390
+ )
1391
+ else:
1392
+ resolved_archive_file = None
1393
+
1394
+ # init random models
1395
+ model = cls(config, *model_args, **model_kwargs)
1396
+
1397
+ with open(resolved_archive_file, "rb") as state_f:
1398
+ try:
1399
+ state = from_bytes(cls, state_f.read())
1400
+ except (UnpicklingError, msgpack.exceptions.ExtraData) as e:
1401
+ try:
1402
+ with open(resolved_archive_file) as f:
1403
+ if f.read().startswith("version"):
1404
+ raise OSError(
1405
+ "You seem to have cloned a repository without having git-lfs installed. Please install "
1406
+ "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
1407
+ "you cloned."
1408
+ )
1409
+ else:
1410
+ raise ValueError from e
1411
+ except (UnicodeDecodeError, ValueError):
1412
+ raise EnvironmentError(
1413
+ f"Unable to convert {archive_file} to Flax deserializable object. "
1414
+ )
1415
+
1416
+ # if model is base model only use model_prefix key
1417
+ if (
1418
+ cls.base_model_prefix not in dict(model.params)
1419
+ and cls.base_model_prefix in state
1420
+ ):
1421
+ state = state[cls.base_model_prefix]
1422
+
1423
+ # if model is head model and we are loading weights from base model
1424
+ # we initialize new params dict with base_model_prefix
1425
+ if (
1426
+ cls.base_model_prefix in dict(model.params)
1427
+ and cls.base_model_prefix not in state
1428
+ ):
1429
+ state = {cls.base_model_prefix: state}
1430
+
1431
+ # flatten dicts
1432
+ state = flatten_dict(state)
1433
+
1434
+ random_state = flatten_dict(unfreeze(model.params))
1435
+
1436
+ missing_keys = model.required_params - set(state.keys())
1437
+ unexpected_keys = set(state.keys()) - model.required_params
1438
+
1439
+ # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not
1440
+ # matching the weights in the model.
1441
+ mismatched_keys = []
1442
+ for key in state.keys():
1443
+ if key in random_state and state[key].shape != random_state[key].shape:
1444
+ if ignore_mismatched_sizes:
1445
+ mismatched_keys.append(
1446
+ (key, state[key].shape, random_state[key].shape)
1447
+ )
1448
+ state[key] = random_state[key]
1449
+ else:
1450
+ raise ValueError(
1451
+ f"Trying to load the pretrained weight for {key} failed: checkpoint has shape "
1452
+ f"{state[key].shape} which is incompatible with the model shape {random_state[key].shape}. "
1453
+ "Using `ignore_mismatched_sizes=True` if you really want to load this checkpoint inside this "
1454
+ "model."
1455
+ )
1456
+
1457
+ # add missing keys as random parameters
1458
+ for missing_key in missing_keys:
1459
+ state[missing_key] = random_state[missing_key]
1460
+
1461
+ # remove unexpected keys to not be saved again
1462
+ for unexpected_key in unexpected_keys:
1463
+ del state[unexpected_key]
1464
+
1465
+ if len(unexpected_keys) > 0:
1466
+ logger.warning(
1467
+ f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
1468
+ f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
1469
+ f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
1470
+ f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
1471
+ f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
1472
+ f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
1473
+ )
1474
+ else:
1475
+ logger.info(
1476
+ f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n"
1477
+ )
1478
+
1479
+ if len(missing_keys) > 0:
1480
+ logger.warning(
1481
+ f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
1482
+ f"and are newly initialized: {missing_keys}\n"
1483
+ f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
1484
+ )
1485
+ elif len(mismatched_keys) == 0:
1486
+ logger.info(
1487
+ f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
1488
+ f"If your task is similar to the task the model of the checkpoint was trained on, "
1489
+ f"you can already use {model.__class__.__name__} for predictions without further training."
1490
+ )
1491
+ if len(mismatched_keys) > 0:
1492
+ mismatched_warning = "\n".join(
1493
+ [
1494
+ f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
1495
+ for key, shape1, shape2 in mismatched_keys
1496
+ ]
1497
+ )
1498
+ logger.warning(
1499
+ f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
1500
+ f"and are newly initialized because the shapes did not match:\n{mismatched_warning}\n"
1501
+ f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
1502
+ )
1503
+
1504
+ # set correct parameters
1505
+ model.params = unflatten_dict(state)
1506
+
1507
+ return model
1508
+
1509
+
1510
+ class FlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
1511
+ """
1512
+ Edits:
1513
+ - no bias
1514
+ - lm_head set to image_vocab_size + 1 (for BOS)
1515
+ - uses custom FlaxBartModule
1516
+ """
1517
+
1518
+ def setup(self):
1519
+ self.model = FlaxBartModule(config=self.config, dtype=self.dtype)
1520
+ self.lm_head = nn.Dense(
1521
+ self.config.image_vocab_size
1522
+ + 1, # image vocab size + 1 for BOS to have same size as decoder inputs (for sharding)
1523
+ use_bias=False,
1524
+ dtype=self.dtype,
1525
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
1526
+ )
1527
+
1528
+ def __call__(
1529
+ self,
1530
+ input_ids,
1531
+ attention_mask,
1532
+ decoder_input_ids,
1533
+ decoder_attention_mask,
1534
+ position_ids,
1535
+ decoder_position_ids,
1536
+ output_attentions: bool = False,
1537
+ output_hidden_states: bool = False,
1538
+ return_dict: bool = True,
1539
+ deterministic: bool = True,
1540
+ ):
1541
+ outputs = self.model(
1542
+ input_ids=input_ids,
1543
+ attention_mask=attention_mask,
1544
+ decoder_input_ids=decoder_input_ids,
1545
+ decoder_attention_mask=decoder_attention_mask,
1546
+ position_ids=position_ids,
1547
+ decoder_position_ids=decoder_position_ids,
1548
+ output_attentions=output_attentions,
1549
+ output_hidden_states=output_hidden_states,
1550
+ return_dict=return_dict,
1551
+ deterministic=deterministic,
1552
+ )
1553
+
1554
+ hidden_states = outputs[0]
1555
+
1556
+ if self.config.tie_word_embeddings:
1557
+ shared_embedding = self.model.variables["params"]["shared"]["embedding"]
1558
+ lm_logits = self.lm_head.apply(
1559
+ {"params": {"kernel": shared_embedding.T}}, hidden_states
1560
+ )
1561
+ else:
1562
+ lm_logits = self.lm_head(hidden_states)
1563
+
1564
+ if not return_dict:
1565
+ output = (lm_logits,) + outputs[1:]
1566
+ return output
1567
+
1568
+ return FlaxSeq2SeqLMOutput(
1569
+ logits=lm_logits,
1570
+ decoder_hidden_states=outputs.decoder_hidden_states,
1571
+ decoder_attentions=outputs.decoder_attentions,
1572
+ cross_attentions=outputs.cross_attentions,
1573
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
1574
+ encoder_hidden_states=outputs.encoder_hidden_states,
1575
+ encoder_attentions=outputs.encoder_attentions,
1576
+ )
1577
+
1578
+
1579
+ @flax.struct.dataclass
1580
+ class SampleState:
1581
+ cur_len: jnp.ndarray
1582
+ sequences: jnp.ndarray
1583
+ running_token: jnp.ndarray
1584
+ is_sent_finished: jnp.ndarray
1585
+ prng_key: jnp.ndarray
1586
+ model_kwargs: Dict[str, jnp.ndarray]
1587
+ model_kwargs_uncond: Dict[str, jnp.ndarray]
1588
+
1589
+
1590
+ class DalleBart(
1591
+ PretrainedFromWandbMixin, FlaxBartPreTrainedModel, FlaxBartForConditionalGeneration
1592
+ ):
1593
+ """
1594
+ Edits:
1595
+ - renamed from FlaxBartForConditionalGeneration
1596
+ - uses custom FlaxBartPreTrainedModel
1597
+ - uses custom FlaxBartForConditionalGenerationModule
1598
+ - no bias in decode method
1599
+ - custom prepare_inputs_for_generation using "max_length - 1" to avoid issues
1600
+ related to position embedding during model.generate()
1601
+ - custom generate method to allow super conditions
1602
+ """
1603
+
1604
+ module_class = FlaxBartForConditionalGenerationModule
1605
+
1606
+ def decode(
1607
+ self,
1608
+ decoder_input_ids,
1609
+ encoder_outputs,
1610
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
1611
+ decoder_attention_mask: Optional[jnp.ndarray] = None,
1612
+ decoder_position_ids: Optional[jnp.ndarray] = None,
1613
+ past_key_values: dict = None,
1614
+ output_attentions: Optional[bool] = None,
1615
+ output_hidden_states: Optional[bool] = None,
1616
+ return_dict: Optional[bool] = None,
1617
+ train: bool = False,
1618
+ params: dict = None,
1619
+ dropout_rng: PRNGKey = None,
1620
+ ):
1621
+ output_attentions = (
1622
+ output_attentions
1623
+ if output_attentions is not None
1624
+ else self.config.output_attentions
1625
+ )
1626
+ output_hidden_states = (
1627
+ output_hidden_states
1628
+ if output_hidden_states is not None
1629
+ else self.config.output_hidden_states
1630
+ )
1631
+ return_dict = (
1632
+ return_dict if return_dict is not None else self.config.return_dict
1633
+ )
1634
+
1635
+ encoder_hidden_states = encoder_outputs[0]
1636
+ if encoder_attention_mask is None:
1637
+ batch_size, sequence_length = encoder_hidden_states.shape[:2]
1638
+ encoder_attention_mask = jnp.ones((batch_size, sequence_length))
1639
+
1640
+ batch_size, sequence_length = decoder_input_ids.shape
1641
+ if decoder_attention_mask is None:
1642
+ decoder_attention_mask = jnp.ones((batch_size, sequence_length))
1643
+
1644
+ if decoder_position_ids is None:
1645
+ if past_key_values is not None:
1646
+ raise ValueError(
1647
+ "Make sure to provide `decoder_position_ids` when passing `past_key_values`."
1648
+ )
1649
+
1650
+ decoder_position_ids = jnp.broadcast_to(
1651
+ jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
1652
+ )
1653
+
1654
+ # Handle any PRNG if needed
1655
+ rngs = {}
1656
+ if dropout_rng is not None:
1657
+ rngs["dropout"] = dropout_rng
1658
+
1659
+ inputs = {"params": params or self.params}
1660
+
1661
+ # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
1662
+ # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
1663
+ # it can be changed by FlaxBartAttention module
1664
+ if past_key_values:
1665
+ inputs["cache"] = past_key_values
1666
+ mutable = ["cache"]
1667
+ else:
1668
+ mutable = False
1669
+
1670
+ def _decoder_forward(
1671
+ module,
1672
+ decoder_input_ids,
1673
+ decoder_attention_mask,
1674
+ decoder_position_ids,
1675
+ **kwargs,
1676
+ ):
1677
+ decoder_module = module._get_decoder_module()
1678
+ outputs = decoder_module(
1679
+ decoder_input_ids,
1680
+ decoder_attention_mask,
1681
+ decoder_position_ids,
1682
+ **kwargs,
1683
+ )
1684
+ hidden_states = outputs[0]
1685
+
1686
+ if self.config.tie_word_embeddings:
1687
+ shared_embedding = module.model.variables["params"]["shared"][
1688
+ "embedding"
1689
+ ]
1690
+ lm_logits = module.lm_head.apply(
1691
+ {"params": {"kernel": shared_embedding.T}}, hidden_states
1692
+ )
1693
+ else:
1694
+ lm_logits = module.lm_head(hidden_states)
1695
+
1696
+ return lm_logits, outputs
1697
+
1698
+ outputs = self.module.apply(
1699
+ inputs,
1700
+ decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
1701
+ decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
1702
+ decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
1703
+ encoder_hidden_states=encoder_hidden_states,
1704
+ encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
1705
+ output_attentions=output_attentions,
1706
+ output_hidden_states=output_hidden_states,
1707
+ return_dict=return_dict,
1708
+ deterministic=not train,
1709
+ rngs=rngs,
1710
+ mutable=mutable,
1711
+ method=_decoder_forward,
1712
+ )
1713
+
1714
+ if past_key_values is None:
1715
+ lm_logits, decoder_outputs = outputs
1716
+ else:
1717
+ (lm_logits, decoder_outputs), past = outputs
1718
+
1719
+ if return_dict:
1720
+ outputs = FlaxCausalLMOutputWithCrossAttentions(
1721
+ logits=lm_logits,
1722
+ hidden_states=decoder_outputs.hidden_states,
1723
+ attentions=decoder_outputs.attentions,
1724
+ cross_attentions=decoder_outputs.cross_attentions,
1725
+ )
1726
+ else:
1727
+ outputs = (lm_logits,) + decoder_outputs[1:]
1728
+
1729
+ # add updated cache to model output
1730
+ if past_key_values is not None and return_dict:
1731
+ outputs["past_key_values"] = unfreeze(past["cache"])
1732
+ return outputs
1733
+ elif past_key_values is not None and not return_dict:
1734
+ outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
1735
+
1736
+ return outputs
1737
+
1738
+ def prepare_inputs_for_generation(
1739
+ self,
1740
+ decoder_input_ids,
1741
+ max_length,
1742
+ attention_mask: Optional[jnp.DeviceArray] = None,
1743
+ decoder_attention_mask: Optional[jnp.DeviceArray] = None,
1744
+ encoder_outputs=None,
1745
+ **kwargs,
1746
+ ):
1747
+ # initializing the cache
1748
+ batch_size, seq_length = decoder_input_ids.shape
1749
+
1750
+ past_key_values = self.init_cache(batch_size, max_length - 1, encoder_outputs)
1751
+ # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
1752
+ # But since the decoder uses a causal mask, those positions are masked anyways.
1753
+ # Thus we can create a single static attention_mask here, which is more efficient for compilation
1754
+ extended_attention_mask = jnp.ones((batch_size, max_length - 1), dtype="i4")
1755
+ if decoder_attention_mask is not None:
1756
+ position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
1757
+ extended_attention_mask = lax.dynamic_update_slice(
1758
+ extended_attention_mask, decoder_attention_mask, (0, 0)
1759
+ )
1760
+ else:
1761
+ position_ids = jnp.broadcast_to(
1762
+ jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)
1763
+ )
1764
+
1765
+ return {
1766
+ "past_key_values": past_key_values,
1767
+ "encoder_outputs": encoder_outputs,
1768
+ "encoder_attention_mask": attention_mask,
1769
+ "decoder_attention_mask": extended_attention_mask,
1770
+ "decoder_position_ids": position_ids,
1771
+ }
1772
+
1773
+ def generate(
1774
+ self,
1775
+ input_ids: jnp.ndarray,
1776
+ attention_mask: Optional[jnp.ndarray] = None,
1777
+ max_length: Optional[int] = None,
1778
+ pad_token_id: Optional[int] = None,
1779
+ bos_token_id: Optional[int] = None,
1780
+ eos_token_id: Optional[int] = None,
1781
+ decoder_start_token_id: Optional[int] = None,
1782
+ do_sample: Optional[bool] = None,
1783
+ prng_key: Optional[jnp.ndarray] = None,
1784
+ top_k: Optional[int] = None,
1785
+ top_p: Optional[float] = None,
1786
+ temperature: Optional[float] = None,
1787
+ num_beams: Optional[int] = None,
1788
+ no_repeat_ngram_size: Optional[int] = None,
1789
+ min_length: Optional[int] = None,
1790
+ forced_bos_token_id: Optional[int] = None,
1791
+ forced_eos_token_id: Optional[int] = None,
1792
+ length_penalty: Optional[float] = None,
1793
+ early_stopping: Optional[bool] = None,
1794
+ trace: bool = True,
1795
+ params: Optional[Dict[str, jnp.ndarray]] = None,
1796
+ condition_scale: Optional[float] = 1.0,
1797
+ input_ids_uncond: Optional[jnp.ndarray] = None,
1798
+ attention_mask_uncond: Optional[jnp.ndarray] = None,
1799
+ **model_kwargs,
1800
+ ):
1801
+ """Edit: Allow super conditioning."""
1802
+
1803
+ # set init values
1804
+ max_length = max_length if max_length is not None else self.config.max_length
1805
+ bos_token_id = (
1806
+ bos_token_id if bos_token_id is not None else self.config.bos_token_id
1807
+ )
1808
+ pad_token_id = (
1809
+ pad_token_id if pad_token_id is not None else self.config.pad_token_id
1810
+ )
1811
+ eos_token_id = (
1812
+ eos_token_id if eos_token_id is not None else self.config.eos_token_id
1813
+ )
1814
+ decoder_start_token_id = (
1815
+ decoder_start_token_id
1816
+ if decoder_start_token_id
1817
+ else self.config.decoder_start_token_id
1818
+ )
1819
+ prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0)
1820
+
1821
+ if decoder_start_token_id is None and self.config.is_encoder_decoder:
1822
+ raise ValueError(
1823
+ "`decoder_start_token_id` has to be defined for encoder-decoder generation."
1824
+ )
1825
+
1826
+ do_sample = do_sample if do_sample is not None else self.config.do_sample
1827
+ num_beams = num_beams if num_beams is not None else self.config.num_beams
1828
+
1829
+ if self.config.is_encoder_decoder:
1830
+ # add encoder_outputs to model_kwargs
1831
+ if model_kwargs.get("encoder_outputs") is None:
1832
+ model_kwargs_input = dict(model_kwargs)
1833
+ model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
1834
+ input_ids,
1835
+ params,
1836
+ {"attention_mask": attention_mask, **model_kwargs_input},
1837
+ )
1838
+ if condition_scale != 1.0:
1839
+ assert (
1840
+ input_ids_uncond is not None
1841
+ ), "`input_ids_uncond` has to be defined for super conditioning."
1842
+ assert (
1843
+ do_sample is True
1844
+ ), "`do_sample` has to be True for super conditioning."
1845
+ assert (
1846
+ num_beams == 1
1847
+ ), "`num_beams` has to be 1 for super conditioning."
1848
+ model_kwargs_uncond = (
1849
+ self._prepare_encoder_decoder_kwargs_for_generation(
1850
+ input_ids_uncond,
1851
+ params,
1852
+ {
1853
+ "attention_mask": attention_mask_uncond,
1854
+ **model_kwargs_input,
1855
+ },
1856
+ )
1857
+ )
1858
+ else:
1859
+ model_kwargs_uncond = None
1860
+ # prepare decoder_input_ids for generation
1861
+ input_ids = (
1862
+ jnp.ones((input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
1863
+ )
1864
+
1865
+ if not do_sample and num_beams == 1:
1866
+ logits_processor = self._get_logits_processor(
1867
+ no_repeat_ngram_size,
1868
+ min_length,
1869
+ max_length,
1870
+ eos_token_id,
1871
+ forced_bos_token_id,
1872
+ forced_eos_token_id,
1873
+ )
1874
+ return self._greedy_search(
1875
+ input_ids,
1876
+ max_length,
1877
+ pad_token_id,
1878
+ eos_token_id,
1879
+ logits_processor=logits_processor,
1880
+ trace=trace,
1881
+ params=params,
1882
+ model_kwargs=model_kwargs,
1883
+ )
1884
+ elif do_sample and num_beams == 1:
1885
+ logits_warper = self._get_logits_warper(
1886
+ top_k=top_k, top_p=top_p, temperature=temperature
1887
+ )
1888
+ logits_processor = self._get_logits_processor(
1889
+ no_repeat_ngram_size,
1890
+ min_length,
1891
+ max_length,
1892
+ eos_token_id,
1893
+ forced_bos_token_id,
1894
+ forced_eos_token_id,
1895
+ )
1896
+ return self._sample(
1897
+ input_ids,
1898
+ max_length,
1899
+ pad_token_id,
1900
+ eos_token_id,
1901
+ prng_key,
1902
+ logits_warper=logits_warper,
1903
+ logits_processor=logits_processor,
1904
+ trace=trace,
1905
+ params=params,
1906
+ model_kwargs=model_kwargs,
1907
+ condition_scale=condition_scale,
1908
+ model_kwargs_uncond=model_kwargs_uncond,
1909
+ )
1910
+ elif not do_sample and num_beams > 1:
1911
+ # broadcast input_ids & encoder_outputs
1912
+ input_ids = self._expand_to_num_beams(input_ids, num_beams=num_beams)
1913
+
1914
+ if "encoder_outputs" in model_kwargs:
1915
+ model_kwargs["encoder_outputs"][
1916
+ "last_hidden_state"
1917
+ ] = self._expand_to_num_beams(
1918
+ model_kwargs["encoder_outputs"]["last_hidden_state"],
1919
+ num_beams=num_beams,
1920
+ )
1921
+
1922
+ if "attention_mask" in model_kwargs:
1923
+ model_kwargs["attention_mask"] = self._expand_to_num_beams(
1924
+ model_kwargs["attention_mask"], num_beams=num_beams
1925
+ )
1926
+
1927
+ logits_processor = self._get_logits_processor(
1928
+ no_repeat_ngram_size,
1929
+ min_length,
1930
+ max_length,
1931
+ eos_token_id,
1932
+ forced_bos_token_id,
1933
+ forced_eos_token_id,
1934
+ )
1935
+
1936
+ return self._beam_search(
1937
+ input_ids,
1938
+ max_length,
1939
+ pad_token_id,
1940
+ eos_token_id,
1941
+ length_penalty=length_penalty,
1942
+ early_stopping=early_stopping,
1943
+ logits_processor=logits_processor,
1944
+ trace=trace,
1945
+ params=params,
1946
+ model_kwargs=model_kwargs,
1947
+ )
1948
+ else:
1949
+ raise NotImplementedError("`Beam sampling is currently not implemented.")
1950
+
1951
+ def _sample(
1952
+ self,
1953
+ input_ids: None,
1954
+ max_length: Optional[int] = None,
1955
+ pad_token_id: Optional[int] = None,
1956
+ eos_token_id: Optional[int] = None,
1957
+ prng_key: Optional[jnp.ndarray] = None,
1958
+ logits_processor=None,
1959
+ logits_warper=None,
1960
+ trace: bool = True,
1961
+ params: Optional[Dict[str, jnp.ndarray]] = None,
1962
+ model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
1963
+ condition_scale: float = 1.0,
1964
+ model_kwargs_uncond: Optional[Dict[str, jnp.ndarray]] = None,
1965
+ ):
1966
+ # init values
1967
+ max_length = max_length if max_length is not None else self.config.max_length
1968
+ pad_token_id = (
1969
+ pad_token_id if pad_token_id is not None else self.config.pad_token_id
1970
+ )
1971
+ eos_token_id = (
1972
+ eos_token_id if eos_token_id is not None else self.config.eos_token_id
1973
+ )
1974
+ prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0)
1975
+
1976
+ batch_size, cur_len = input_ids.shape
1977
+
1978
+ eos_token_id = jnp.array(eos_token_id)
1979
+ pad_token_id = jnp.array(pad_token_id)
1980
+ cur_len = jnp.array(cur_len)
1981
+
1982
+ # per batch-item holding current token in loop.
1983
+ sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32)
1984
+ sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0))
1985
+
1986
+ # per batch-item state bit indicating if sentence has finished.
1987
+ is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_)
1988
+
1989
+ # For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
1990
+ # and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
1991
+ model = self.decode if self.config.is_encoder_decoder else self
1992
+
1993
+ # initialize model specific kwargs
1994
+ model_kwargs = self.prepare_inputs_for_generation(
1995
+ input_ids, max_length, **model_kwargs
1996
+ )
1997
+ if condition_scale != 1.0:
1998
+ model_kwargs_uncond = self.prepare_inputs_for_generation(
1999
+ input_ids, max_length, **model_kwargs_uncond
2000
+ )
2001
+
2002
+ # initialize state
2003
+ state = SampleState(
2004
+ cur_len=cur_len,
2005
+ sequences=sequences,
2006
+ running_token=input_ids,
2007
+ is_sent_finished=is_sent_finished,
2008
+ prng_key=prng_key,
2009
+ model_kwargs=model_kwargs,
2010
+ model_kwargs_uncond=model_kwargs_uncond,
2011
+ )
2012
+
2013
+ def sample_search_cond_fn(state):
2014
+ """state termination condition fn."""
2015
+ has_reached_max_length = state.cur_len == max_length
2016
+ all_sequence_finished = jnp.all(state.is_sent_finished)
2017
+ finish_generation = jnp.logical_or(
2018
+ has_reached_max_length, all_sequence_finished
2019
+ )
2020
+ return ~finish_generation
2021
+
2022
+ def sample_search_body_fn(state):
2023
+ """state update fn."""
2024
+ prng_key, prng_key_next = jax.random.split(state.prng_key)
2025
+ model_outputs = model(
2026
+ state.running_token, params=params, **state.model_kwargs
2027
+ )
2028
+
2029
+ logits = model_outputs.logits[:, -1]
2030
+
2031
+ # perform super conditioning
2032
+ # Source: @RiversHaveWings - https://twitter.com/RiversHaveWings/status/1478093658716966912?s=20&t=xdm-wZ61Wf7OLnE_NJHZ1w
2033
+ if condition_scale != 1.0:
2034
+ model_outputs_uncond = model(
2035
+ state.running_token, params=params, **state.model_kwargs_uncond
2036
+ )
2037
+ logits_uncond = model_outputs_uncond.logits[:, -1]
2038
+ logits = logits_uncond + condition_scale * (logits - logits_uncond)
2039
+ else:
2040
+ model_outputs_uncond = None
2041
+
2042
+ # apply min_length, ...
2043
+ logits = logits_processor(state.sequences, logits, state.cur_len)
2044
+ # apply top_k, top_k, temperature
2045
+ logits = logits_warper(logits, logits, state.cur_len)
2046
+
2047
+ next_token = jax.random.categorical(prng_key, logits, axis=-1)
2048
+
2049
+ next_is_sent_finished = state.is_sent_finished | (
2050
+ next_token == eos_token_id
2051
+ )
2052
+ next_token = (
2053
+ next_token * ~next_is_sent_finished
2054
+ + pad_token_id * next_is_sent_finished
2055
+ )
2056
+ next_token = next_token[:, None]
2057
+
2058
+ next_sequences = lax.dynamic_update_slice(
2059
+ state.sequences, next_token, (0, state.cur_len)
2060
+ )
2061
+ next_model_kwargs = self.update_inputs_for_generation(
2062
+ model_outputs, state.model_kwargs
2063
+ )
2064
+ next_model_kwargs_uncond = (
2065
+ self.update_inputs_for_generation(
2066
+ model_outputs_uncond, state.model_kwargs_uncond
2067
+ )
2068
+ if condition_scale != 1.0
2069
+ else None
2070
+ )
2071
+
2072
+ return SampleState(
2073
+ cur_len=state.cur_len + 1,
2074
+ sequences=next_sequences,
2075
+ running_token=next_token,
2076
+ is_sent_finished=next_is_sent_finished,
2077
+ model_kwargs=next_model_kwargs,
2078
+ model_kwargs_uncond=next_model_kwargs_uncond,
2079
+ prng_key=prng_key_next,
2080
+ )
2081
+
2082
+ # The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU
2083
+ if input_ids.shape[1] > 1:
2084
+ state = sample_search_body_fn(state)
2085
+
2086
+ if not trace:
2087
+ state = self._run_loop_in_debug(
2088
+ sample_search_cond_fn, sample_search_body_fn, state
2089
+ )
2090
+ else:
2091
+ state = lax.while_loop(sample_search_cond_fn, sample_search_body_fn, state)
2092
+
2093
+ return FlaxSampleOutput(sequences=state.sequences)
src/dalle_mini/model/partitions.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ from flax.core.frozen_dict import freeze
4
+ from flax.traverse_util import flatten_dict, unflatten_dict
5
+ from jax.experimental import PartitionSpec as P
6
+
7
+ # utils adapted from https://github.com/google-research/google-research/blob/master/flax_models/t5x/partitions.py
8
+ # Sentinels
9
+ _unmatched = object()
10
+
11
+ # For specifying empty leaf dict `{}`
12
+ empty_dict = object()
13
+
14
+
15
+ def _match(qs, ks):
16
+ """Return True if regexes in qs match any window of strings in tuple ks."""
17
+ # compile regexes and force complete match
18
+ qts = tuple(map(lambda x: re.compile(x + "$"), qs))
19
+ for i in range(len(ks) - len(qs) + 1):
20
+ matches = [x.match(y) for x, y in zip(qts, ks[i:])]
21
+ if matches and all(matches):
22
+ return True
23
+ return False
24
+
25
+
26
+ def _replacement_rules(rules):
27
+ def replace(key, val):
28
+ for rule, replacement in rules:
29
+ if _match(rule, key):
30
+ return replacement
31
+ return val
32
+
33
+ return replace
34
+
35
+
36
+ def _get_partition_rules():
37
+ return [
38
+ # embeddings
39
+ (("embed_positions", "embedding"), P("mp", None)),
40
+ (("embed_tokens", "embedding"), P("mp", None)),
41
+ (("rel_bias", "embedding"), P(None, "mp")),
42
+ # attention
43
+ (("(q_proj|k_proj|v_proj)", "kernel"), P(None, "mp")),
44
+ (("out_proj", "kernel"), P("mp", None)),
45
+ # FFN
46
+ (("Dense_0", "kernel"), P(None, "mp")),
47
+ (("GLU.*", "Dense_1", "kernel"), P(None, "mp")),
48
+ (("GLU.*", "Dense_2", "kernel"), P("mp", None)),
49
+ (("FFN.*", "Dense_1", "kernel"), P("mp", None)),
50
+ # layer norms
51
+ (("(bias|scale)",), None),
52
+ (("lm_head", "kernel"), P(None, "mp")),
53
+ # head scale and tau
54
+ (("(head_scale|tau)",), None),
55
+ ]
56
+
57
+
58
+ def set_partitions(in_dict):
59
+ rules = _get_partition_rules()
60
+ replace = _replacement_rules(rules)
61
+ initd = {k: _unmatched for k in flatten_dict(in_dict)}
62
+ result = {k: replace(k, v) for k, v in initd.items()}
63
+ for k, v in result.items():
64
+ if v == _unmatched:
65
+ print(f"Unmatched -> {k}")
66
+ assert _unmatched not in result.values(), "Incomplete partition spec."
67
+ return freeze(unflatten_dict(result))
src/dalle_mini/model/processor.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ DalleBart processor """
2
+
3
+ import jax.numpy as jnp
4
+
5
+ from .configuration import DalleBartConfig
6
+ from .text import TextNormalizer
7
+ from .tokenizer import DalleBartTokenizer
8
+ from .utils import PretrainedFromWandbMixin
9
+
10
+
11
+ class DalleBartProcessorBase:
12
+ def __init__(
13
+ self, tokenizer: DalleBartTokenizer, normalize_text: bool, max_text_length: int
14
+ ):
15
+ self.tokenizer = tokenizer
16
+ self.normalize_text = normalize_text
17
+ self.max_text_length = max_text_length
18
+ if normalize_text:
19
+ self.text_processor = TextNormalizer()
20
+ # create unconditional tokens
21
+ uncond = self.tokenizer(
22
+ "",
23
+ return_tensors="jax",
24
+ padding="max_length",
25
+ truncation=True,
26
+ max_length=self.max_text_length,
27
+ ).data
28
+ self.input_ids_uncond = uncond["input_ids"]
29
+ self.attention_mask_uncond = uncond["attention_mask"]
30
+
31
+ def __call__(self, text: str = None):
32
+ # check that text is not a string
33
+ assert not isinstance(text, str), "text must be a list of strings"
34
+
35
+ if self.normalize_text:
36
+ text = [self.text_processor(t) for t in text]
37
+ res = self.tokenizer(
38
+ text,
39
+ return_tensors="jax",
40
+ padding="max_length",
41
+ truncation=True,
42
+ max_length=self.max_text_length,
43
+ ).data
44
+ # tokens used only with super conditioning
45
+ n = len(text)
46
+ res["input_ids_uncond"] = jnp.repeat(self.input_ids_uncond, n, axis=0)
47
+ res["attention_mask_uncond"] = jnp.repeat(self.attention_mask_uncond, n, axis=0)
48
+ return res
49
+
50
+ @classmethod
51
+ def from_pretrained(cls, *args, **kwargs):
52
+ tokenizer = DalleBartTokenizer.from_pretrained(*args, **kwargs)
53
+ config = DalleBartConfig.from_pretrained(*args, **kwargs)
54
+ return cls(tokenizer, config.normalize_text, config.max_text_length)
55
+
56
+
57
+ class DalleBartProcessor(PretrainedFromWandbMixin, DalleBartProcessorBase):
58
+ pass
src/dalle_mini/model/text.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Utilities for processing text.
3
+ """
4
+
5
+ import html
6
+ import math
7
+ import random
8
+ import re
9
+ from pathlib import Path
10
+
11
+ import emoji
12
+ import ftfy
13
+ from huggingface_hub import hf_hub_download
14
+ from unidecode import unidecode
15
+
16
+ # based on wiki word occurence
17
+ person_token = [("a person", 282265), ("someone", 121194), ("somebody", 12219)]
18
+ temp_token = "xtokx" # avoid repeating chars
19
+
20
+
21
+ class HashtagProcessor:
22
+ # Adapted from wordninja library
23
+ # We use our wikipedia word count + a good heuristic to make it work
24
+ def __init__(self):
25
+ wiki_word_frequency = hf_hub_download(
26
+ "dalle-mini/dalle-mini", filename="enwiki-words-frequency.txt"
27
+ )
28
+ self._word_cost = (
29
+ l.split()[0]
30
+ for l in Path(wiki_word_frequency).read_text(encoding="utf8").splitlines()
31
+ )
32
+ self._word_cost = {
33
+ str(k): math.log(float(i + 1)) for i, k in enumerate(self._word_cost)
34
+ }
35
+ self._max_word = max(len(x) for x in self._word_cost.keys())
36
+ self._SPLIT_RE = re.compile("[^a-zA-Z0-9']+")
37
+
38
+ def __call__(self, s):
39
+ """Uses dynamic programming to infer the location of spaces in a string without spaces."""
40
+ l = [self._split(x) for x in self._SPLIT_RE.split(s)]
41
+ return " ".join([item for sublist in l for item in sublist])
42
+
43
+ def _split(self, s):
44
+ # Find the best match for the i first characters, assuming cost has
45
+ # been built for the i-1 first characters.
46
+ # Returns a pair (match_cost, match_length).
47
+ def best_match(i):
48
+ candidates = enumerate(reversed(cost[max(0, i - self._max_word) : i]))
49
+ return min(
50
+ (c + self._word_cost.get(s[i - k - 1 : i].lower(), 9e999), k + 1)
51
+ for k, c in candidates
52
+ )
53
+
54
+ # Build the cost array
55
+ cost = [0]
56
+ for i in range(1, len(s) + 1):
57
+ c, k = best_match(i)
58
+ cost.append(c)
59
+
60
+ # Backtrack to recover the minimal-cost string.
61
+ out = []
62
+ i = len(s)
63
+ while i > 0:
64
+ c, k = best_match(i)
65
+ assert c == cost[i]
66
+ newToken = True
67
+ if not s[i - k : i] == "'": # ignore a lone apostrophe
68
+ if len(out) > 0:
69
+ # re-attach split 's and split digits
70
+ if out[-1] == "'s" or (
71
+ s[i - 1].isdigit() and out[-1][0].isdigit()
72
+ ): # digit followed by digit
73
+ out[-1] = (
74
+ s[i - k : i] + out[-1]
75
+ ) # combine current token with previous token
76
+ newToken = False
77
+
78
+ if newToken:
79
+ out.append(s[i - k : i])
80
+
81
+ i -= k
82
+
83
+ return reversed(out)
84
+
85
+
86
+ def replace_person_token(t):
87
+ "Used for CC12M"
88
+ t = re.sub("<person>([,\s]*(and)*[,\s]*<person>)+", " people ", t)
89
+ while "<person>" in t:
90
+ t = t.replace(
91
+ "<person>", f" {random.choices(*tuple(zip(*person_token)))[0]} ", 1
92
+ )
93
+ return t
94
+
95
+
96
+ def fix_html(t):
97
+ # from OpenAI CLIP
98
+ return html.unescape(html.unescape(t))
99
+
100
+
101
+ def replace_punctuation_with_commas(t):
102
+ return re.sub("[()[\].,|:;?!=+~\-\/{}]", ",", t)
103
+
104
+
105
+ def simplify_quotes(t):
106
+ return re.sub("""['"`]""", ' " ', t)
107
+
108
+
109
+ def merge_quotes(t):
110
+ return re.sub('(\s*"+\s*)+', ' " ', t)
111
+
112
+
113
+ def remove_comma_numbers(t):
114
+ def _f(t):
115
+ return re.sub("(\d),(\d{3})", r"\1\2", t)
116
+
117
+ return _f(_f(t))
118
+
119
+
120
+ def pre_process_dot_numbers(t):
121
+ return re.sub("(\w)\.(\w)", rf"\1{temp_token}dot{temp_token}\2", t)
122
+
123
+
124
+ def post_process_dot_numbers(t):
125
+ return re.sub(f"{temp_token}dot{temp_token}", ".", t)
126
+
127
+
128
+ def pre_process_quotes(t):
129
+ # allows quotes only for 's, 't, 'd, 'm, 'll, 're, 've
130
+ return re.sub(
131
+ r"'(?=([stdm]|(ll)|(re)|(ve)|(ll))\b)", rf"{temp_token}quote{temp_token}", t
132
+ )
133
+
134
+
135
+ def post_process_quotes(t):
136
+ return re.sub(f"{temp_token}quote{temp_token}", "'", t)
137
+
138
+
139
+ def pre_process_dates(t):
140
+ return re.sub("(\d)/(\d)", rf"\1{temp_token}slash{temp_token}\2", t)
141
+
142
+
143
+ def post_process_dates(t):
144
+ return re.sub(f"{temp_token}slash{temp_token}", "/", t)
145
+
146
+
147
+ def merge_commas(t):
148
+ return re.sub("(\s*,+\s*)+", ", ", t)
149
+
150
+
151
+ def add_space_after_commas(t):
152
+ return re.sub(",", ", ", t)
153
+
154
+
155
+ def handle_special_chars(t):
156
+ "Handle special characters"
157
+ # replace "-" with a space when between words without space
158
+ t = re.sub("(\w)-(\w)", r"\1 \2", t)
159
+ # always add space around some characters
160
+ return re.sub("([%&\/$*])", r" \1 ", t)
161
+
162
+
163
+ def expand_hashtags(t, hashtag_processor):
164
+ "Remove # and try to split words"
165
+ return re.sub("#(\w+)", lambda m: hashtag_processor(m.group(1)), t)
166
+
167
+
168
+ _re_ignore_chars = r"[_#\\]"
169
+
170
+
171
+ def ignore_chars(t):
172
+ "Ignore useless characters"
173
+ return re.sub(_re_ignore_chars, " ", t)
174
+
175
+
176
+ def remove_extra_spaces(t):
177
+ "Remove extra spaces (including \t and \n)"
178
+ return re.sub("\s+", " ", t)
179
+
180
+
181
+ def remove_repeating_chars(t):
182
+ "If the same character is present 4+ times (not 3 because of roman 'VIII'), replace with single instance"
183
+ return re.sub(r"(\D)(\1{3,})", r"\1", t)
184
+
185
+
186
+ def remove_urls(t):
187
+ return re.sub(r"http\S+", "", t)
188
+
189
+
190
+ def remove_html_tags(t):
191
+ return re.sub("<[^<]+?>", "", t)
192
+
193
+
194
+ def remove_first_last_commas(t):
195
+ t = t.strip()
196
+ t = t[:-1] if t and t[-1] == "," else t
197
+ t = t[1:] if t and t[0] == "," else t
198
+ return t.strip()
199
+
200
+
201
+ def remove_wiki_ref(t):
202
+ t = re.sub(r"\A\s*\[\d+\]", "", t)
203
+ return re.sub(r"\[\d+\]\s*\Z", "", t)
204
+
205
+
206
+ class TextNormalizer:
207
+ "Normalize text"
208
+
209
+ def __init__(self):
210
+ self._hashtag_processor = HashtagProcessor()
211
+
212
+ def __call__(self, t):
213
+ # fix some characters
214
+ t = ftfy.fix_text(t)
215
+ # fix html
216
+ t = fix_html(t)
217
+ # decode emojis (would be removed by unidecode)
218
+ t = emoji.demojize(t)
219
+ # decode and simplify text: see unidecode library
220
+ t = unidecode(t)
221
+ # lower case
222
+ t = t.lower()
223
+ # replace <PERSON> (for CC12M)
224
+ t = replace_person_token(t)
225
+ # remove wiki reference (for WIT)
226
+ t = remove_wiki_ref(t)
227
+ # remove html tags
228
+ t = remove_html_tags(t)
229
+ # remove urls
230
+ t = remove_urls(t)
231
+ # remove commas in numbers
232
+ t = remove_comma_numbers(t)
233
+ # handle dots in numbers and quotes - Part 1
234
+ t = pre_process_dot_numbers(t)
235
+ t = pre_process_quotes(t)
236
+ t = pre_process_dates(t)
237
+ # handle special characters
238
+ t = handle_special_chars(t)
239
+ # handle hashtags
240
+ t = expand_hashtags(t, self._hashtag_processor)
241
+ # ignore useless characters
242
+ t = ignore_chars(t)
243
+ # simplify quotes
244
+ t = simplify_quotes(t)
245
+ # all punctuation becomes commas
246
+ t = replace_punctuation_with_commas(t)
247
+ # handle dots in numbers and quotes - Part 2
248
+ t = post_process_dot_numbers(t)
249
+ t = post_process_quotes(t)
250
+ t = post_process_dates(t)
251
+ # handle repeating characters
252
+ t = remove_repeating_chars(t)
253
+ # merge quotes
254
+ t = merge_quotes(t)
255
+ # merge commas
256
+ t = merge_commas(t)
257
+ # remove multiple spaces
258
+ t = remove_extra_spaces(t)
259
+ # remove first and last comma
260
+ t = remove_first_last_commas(t)
261
+ # always start with a space
262
+ return f" {t}"
src/dalle_mini/model/tokenizer.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ """ DalleBart tokenizer """
2
+ from transformers import BartTokenizerFast
3
+
4
+ from .utils import PretrainedFromWandbMixin
5
+
6
+
7
+ class DalleBartTokenizer(PretrainedFromWandbMixin, BartTokenizerFast):
8
+ pass
src/dalle_mini/model/utils.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import tempfile
3
+ from pathlib import Path
4
+
5
+ import wandb
6
+
7
+
8
+ class PretrainedFromWandbMixin:
9
+ @classmethod
10
+ def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
11
+ """
12
+ Initializes from a wandb artifact or delegates loading to the superclass.
13
+ """
14
+ with tempfile.TemporaryDirectory() as tmp_dir: # avoid multiple artifact copies
15
+ if ":" in pretrained_model_name_or_path and not os.path.isdir(
16
+ pretrained_model_name_or_path
17
+ ):
18
+ # wandb artifact
19
+ if wandb.run is not None:
20
+ artifact = wandb.run.use_artifact(pretrained_model_name_or_path)
21
+ else:
22
+ artifact = wandb.Api().artifact(pretrained_model_name_or_path)
23
+ pretrained_model_name_or_path = artifact.download(tmp_dir)
24
+
25
+ return super(PretrainedFromWandbMixin, cls).from_pretrained(
26
+ pretrained_model_name_or_path, *model_args, **kwargs
27
+ )
tools/dataset/encode_dataset.ipynb ADDED
@@ -0,0 +1,371 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "d0b72877",
6
+ "metadata": {},
7
+ "source": [
8
+ "# Pre-encoding a dataset for DALLE·mini"
9
+ ]
10
+ },
11
+ {
12
+ "cell_type": "markdown",
13
+ "id": "ba7b31e6",
14
+ "metadata": {},
15
+ "source": [
16
+ "This notebook shows how to pre-encode images to token sequences using JAX, VQGAN and a dataset in the [`webdataset` format](https://webdataset.github.io/webdataset/).\n",
17
+ "\n",
18
+ "Adapt it to your own dataset and image encoder.\n",
19
+ "\n",
20
+ "At the end you should have a dataset of pairs:\n",
21
+ "* a caption defined as a string\n",
22
+ "* an encoded image defined as a list of int."
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "code",
27
+ "execution_count": null,
28
+ "id": "3b59489e",
29
+ "metadata": {},
30
+ "outputs": [],
31
+ "source": [
32
+ "from tqdm.notebook import tqdm\n",
33
+ "\n",
34
+ "import torchvision.transforms as T\n",
35
+ "\n",
36
+ "import webdataset as wds\n",
37
+ "\n",
38
+ "import jax\n",
39
+ "import braceexpand\n",
40
+ "from pathlib import Path"
41
+ ]
42
+ },
43
+ {
44
+ "cell_type": "markdown",
45
+ "id": "c7c4c1e6",
46
+ "metadata": {},
47
+ "source": [
48
+ "## Configuration Parameters"
49
+ ]
50
+ },
51
+ {
52
+ "cell_type": "code",
53
+ "execution_count": 3,
54
+ "id": "1265dbfe",
55
+ "metadata": {},
56
+ "outputs": [],
57
+ "source": [
58
+ "shards = \"my_images/shard-{0000..0008}.tar\" # defined using braceexpand format as used by webdataset\n",
59
+ "encoded_output = Path(\"encoded_data\") # where we will save our encoded data\n",
60
+ "\n",
61
+ "VQGAN_REPO, VQGAN_COMMIT_ID = (\n",
62
+ " \"dalle-mini/vqgan_imagenet_f16_16384\",\n",
63
+ " \"85eb5d3b51a1c62a0cc8f4ccdee9882c0d0bd384\",\n",
64
+ ")\n",
65
+ "\n",
66
+ "# good defaults for a TPU v3-8\n",
67
+ "batch_size = 128 # Per device\n",
68
+ "num_workers = 8 # For parallel processing\n",
69
+ "total_bs = batch_size * jax.device_count() # You can use a smaller size while testing\n",
70
+ "save_frequency = 128 # Number of batches to create a new file (180MB for f16 and 720MB for f8 per file)"
71
+ ]
72
+ },
73
+ {
74
+ "cell_type": "code",
75
+ "execution_count": 5,
76
+ "id": "cd956ec6-7d98-4d4d-a454-f80fe857eadd",
77
+ "metadata": {},
78
+ "outputs": [
79
+ {
80
+ "data": {
81
+ "text/plain": [
82
+ "['XXX/shard-0000.tar',\n",
83
+ " 'XXX/shard-0001.tar',\n",
84
+ " 'XXX/shard-0002.tar',\n",
85
+ " 'XXX/shard-0003.tar',\n",
86
+ " 'XXX/shard-0004.tar',\n",
87
+ " 'XXX/shard-0005.tar',\n",
88
+ " 'XXX/shard-0006.tar',\n",
89
+ " 'XXX/shard-0007.tar',\n",
90
+ " 'XXX/shard-0008.tar']"
91
+ ]
92
+ },
93
+ "execution_count": 5,
94
+ "metadata": {},
95
+ "output_type": "execute_result"
96
+ }
97
+ ],
98
+ "source": [
99
+ "shards = list(\n",
100
+ " braceexpand.braceexpand(shards)\n",
101
+ ") # better display for tqdm with known length"
102
+ ]
103
+ },
104
+ {
105
+ "cell_type": "markdown",
106
+ "id": "75dba8e2",
107
+ "metadata": {},
108
+ "source": [
109
+ "## Load data"
110
+ ]
111
+ },
112
+ {
113
+ "cell_type": "markdown",
114
+ "id": "a1e8fb95",
115
+ "metadata": {},
116
+ "source": [
117
+ "We load data using `webdataset`."
118
+ ]
119
+ },
120
+ {
121
+ "cell_type": "code",
122
+ "execution_count": null,
123
+ "id": "9ef5de9e",
124
+ "metadata": {},
125
+ "outputs": [],
126
+ "source": [
127
+ "ds = (\n",
128
+ " wds.WebDataset(shards, handler=wds.warn_and_continue)\n",
129
+ " .decode(\"rgb\", handler=wds.warn_and_continue)\n",
130
+ " .to_tuple(\"jpg\", \"txt\") # assumes image is in `jpg` and caption in `txt`\n",
131
+ " .batched(total_bs) # load in batch per worker (faster)\n",
132
+ ")"
133
+ ]
134
+ },
135
+ {
136
+ "cell_type": "markdown",
137
+ "id": "90981824",
138
+ "metadata": {},
139
+ "source": [
140
+ "Note:\n",
141
+ "* you can also shuffle shards and items using `shardshuffle` and `shuffle` if necessary.\n",
142
+ "* you may need to resize images in your pipeline (with `map_dict` for example), we assume they are already set to 256x256.\n",
143
+ "* you can also filter out some items using `select`."
144
+ ]
145
+ },
146
+ {
147
+ "cell_type": "markdown",
148
+ "id": "129c377d",
149
+ "metadata": {},
150
+ "source": [
151
+ "We can now inspect our data."
152
+ ]
153
+ },
154
+ {
155
+ "cell_type": "code",
156
+ "execution_count": null,
157
+ "id": "8cac98cb",
158
+ "metadata": {
159
+ "scrolled": true
160
+ },
161
+ "outputs": [],
162
+ "source": [
163
+ "%%time\n",
164
+ "images, captions = next(iter(ds))"
165
+ ]
166
+ },
167
+ {
168
+ "cell_type": "code",
169
+ "execution_count": null,
170
+ "id": "cd268fbf",
171
+ "metadata": {},
172
+ "outputs": [],
173
+ "source": [
174
+ "images.shape"
175
+ ]
176
+ },
177
+ {
178
+ "cell_type": "code",
179
+ "execution_count": null,
180
+ "id": "5acfc4d8",
181
+ "metadata": {},
182
+ "outputs": [],
183
+ "source": [
184
+ "captions[:10]"
185
+ ]
186
+ },
187
+ {
188
+ "cell_type": "code",
189
+ "execution_count": null,
190
+ "id": "c24693c0",
191
+ "metadata": {},
192
+ "outputs": [],
193
+ "source": [
194
+ "T.ToPILImage()(images[0].permute(2, 0, 1))"
195
+ ]
196
+ },
197
+ {
198
+ "cell_type": "markdown",
199
+ "id": "3059ffb1",
200
+ "metadata": {},
201
+ "source": [
202
+ "Finally we create our dataloader."
203
+ ]
204
+ },
205
+ {
206
+ "cell_type": "code",
207
+ "execution_count": null,
208
+ "id": "c227c551",
209
+ "metadata": {},
210
+ "outputs": [],
211
+ "source": [
212
+ "dl = (\n",
213
+ " wds.WebLoader(ds, batch_size=None, num_workers=8).unbatched().batched(total_bs)\n",
214
+ ") # avoid partial batch at the end of each worker"
215
+ ]
216
+ },
217
+ {
218
+ "cell_type": "markdown",
219
+ "id": "a354472b",
220
+ "metadata": {},
221
+ "source": [
222
+ "## Image encoder\n",
223
+ "\n",
224
+ "We'll use a VQGAN trained with Taming Transformers and converted to a JAX model."
225
+ ]
226
+ },
227
+ {
228
+ "cell_type": "code",
229
+ "execution_count": null,
230
+ "id": "47a8b818",
231
+ "metadata": {
232
+ "scrolled": true
233
+ },
234
+ "outputs": [],
235
+ "source": [
236
+ "from vqgan_jax.modeling_flax_vqgan import VQModel\n",
237
+ "from flax.jax_utils import replicate\n",
238
+ "\n",
239
+ "vqgan = VQModel.from_pretrained(\"flax-community/vqgan_f16_16384\")\n",
240
+ "vqgan_params = replicate(vqgan.params)"
241
+ ]
242
+ },
243
+ {
244
+ "cell_type": "markdown",
245
+ "id": "62ad01c3",
246
+ "metadata": {},
247
+ "source": [
248
+ "## Encoding"
249
+ ]
250
+ },
251
+ {
252
+ "cell_type": "markdown",
253
+ "id": "20357f74",
254
+ "metadata": {},
255
+ "source": [
256
+ "Encoding is really simple using `shard` to automatically distribute batches across devices and `pmap`."
257
+ ]
258
+ },
259
+ {
260
+ "cell_type": "code",
261
+ "execution_count": null,
262
+ "id": "322a4619",
263
+ "metadata": {},
264
+ "outputs": [],
265
+ "source": [
266
+ "from flax.training.common_utils import shard\n",
267
+ "from functools import partial\n",
268
+ "\n",
269
+ "\n",
270
+ "@partial(jax.pmap, axis_name=\"batch\")\n",
271
+ "def p_encode(batch, params):\n",
272
+ " # Not sure if we should `replicate` params, does not seem to have any effect\n",
273
+ " _, indices = vqgan.encode(batch, params=params)\n",
274
+ " return indices"
275
+ ]
276
+ },
277
+ {
278
+ "cell_type": "code",
279
+ "execution_count": null,
280
+ "id": "ff6c10d4",
281
+ "metadata": {},
282
+ "outputs": [],
283
+ "source": [
284
+ "import pandas as pd\n",
285
+ "\n",
286
+ "\n",
287
+ "def encode_dataset(dataloader, output_dir, save_frequency):\n",
288
+ " output_dir.mkdir(parents=True, exist_ok=True)\n",
289
+ " all_captions = []\n",
290
+ " all_encoding = []\n",
291
+ " n_file = 1\n",
292
+ " for idx, (images, captions) in enumerate(tqdm(dataloader)):\n",
293
+ " images = images.numpy()\n",
294
+ " n = len(images) // 8 * 8\n",
295
+ " if n != len(images):\n",
296
+ " # get the max number of images we can (multiple of 8)\n",
297
+ " print(f\"Different sizes {n} vs {len(images)}\")\n",
298
+ " images = images[:n]\n",
299
+ " captions = captions[:n]\n",
300
+ " if not len(captions):\n",
301
+ " print(f\"No images/captions in batch...\")\n",
302
+ " continue\n",
303
+ " images = shard(images)\n",
304
+ " encoded = p_encode(images, vqgan_params)\n",
305
+ " encoded = encoded.reshape(-1, encoded.shape[-1])\n",
306
+ " all_captions.extend(captions)\n",
307
+ " all_encoding.extend(encoded.tolist())\n",
308
+ "\n",
309
+ " # save files\n",
310
+ " if (idx + 1) % save_frequency == 0:\n",
311
+ " print(f\"Saving file {n_file}\")\n",
312
+ " batch_df = pd.DataFrame.from_dict(\n",
313
+ " {\"caption\": all_captions, \"encoding\": all_encoding}\n",
314
+ " )\n",
315
+ " batch_df.to_parquet(f\"{output_dir}/{n_file:03d}.parquet\")\n",
316
+ " all_captions = []\n",
317
+ " all_encoding = []\n",
318
+ " n_file += 1\n",
319
+ "\n",
320
+ " if len(all_captions):\n",
321
+ " print(f\"Saving final file {n_file}\")\n",
322
+ " batch_df = pd.DataFrame.from_dict(\n",
323
+ " {\"caption\": all_captions, \"encoding\": all_encoding}\n",
324
+ " )\n",
325
+ " batch_df.to_parquet(f\"{output_dir}/{n_file:03d}.parquet\")"
326
+ ]
327
+ },
328
+ {
329
+ "cell_type": "code",
330
+ "execution_count": null,
331
+ "id": "7704863d",
332
+ "metadata": {},
333
+ "outputs": [],
334
+ "source": [
335
+ "encode_dataset(dl, output_dir=encoded_output, save_frequency=save_frequency)"
336
+ ]
337
+ },
338
+ {
339
+ "cell_type": "markdown",
340
+ "id": "8953dd84",
341
+ "metadata": {},
342
+ "source": [
343
+ "----"
344
+ ]
345
+ }
346
+ ],
347
+ "metadata": {
348
+ "interpreter": {
349
+ "hash": "db471c52d602b4f5f40ecaf278e88ccfef85c29d0a1a07185b0d51fc7acf4e26"
350
+ },
351
+ "kernelspec": {
352
+ "display_name": "Python 3 (ipykernel)",
353
+ "language": "python",
354
+ "name": "python3"
355
+ },
356
+ "language_info": {
357
+ "codemirror_mode": {
358
+ "name": "ipython",
359
+ "version": 3
360
+ },
361
+ "file_extension": ".py",
362
+ "mimetype": "text/x-python",
363
+ "name": "python",
364
+ "nbconvert_exporter": "python",
365
+ "pygments_lexer": "ipython3",
366
+ "version": "3.9.7"
367
+ }
368
+ },
369
+ "nbformat": 4,
370
+ "nbformat_minor": 5
371
+ }
tools/inference/inference_pipeline.ipynb ADDED
@@ -0,0 +1,479 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {
6
+ "colab_type": "text",
7
+ "id": "view-in-github"
8
+ },
9
+ "source": [
10
+ "<a href=\"https://colab.research.google.com/github/borisdayma/dalle-mini/blob/main/tools/inference/inference_pipeline.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
11
+ ]
12
+ },
13
+ {
14
+ "cell_type": "markdown",
15
+ "metadata": {
16
+ "id": "118UKH5bWCGa"
17
+ },
18
+ "source": [
19
+ "# DALL·E mini - Inference pipeline\n",
20
+ "\n",
21
+ "*Generate images from a text prompt*\n",
22
+ "\n",
23
+ "<img src=\"https://github.com/borisdayma/dalle-mini/blob/main/img/logo.png?raw=true\" width=\"200\">\n",
24
+ "\n",
25
+ "This notebook illustrates [DALL·E mini](https://github.com/borisdayma/dalle-mini) inference pipeline.\n",
26
+ "\n",
27
+ "Just want to play? Use [the demo](https://huggingface.co/spaces/flax-community/dalle-mini).\n",
28
+ "\n",
29
+ "For more understanding of the model, refer to [the report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA)."
30
+ ]
31
+ },
32
+ {
33
+ "cell_type": "markdown",
34
+ "metadata": {
35
+ "id": "dS8LbaonYm3a"
36
+ },
37
+ "source": [
38
+ "## 🛠️ Installation and set-up"
39
+ ]
40
+ },
41
+ {
42
+ "cell_type": "code",
43
+ "execution_count": null,
44
+ "metadata": {
45
+ "id": "uzjAM2GBYpZX"
46
+ },
47
+ "outputs": [],
48
+ "source": [
49
+ "# Install required libraries\n",
50
+ "!pip install -q git+https://github.com/huggingface/transformers.git\n",
51
+ "!pip install -q git+https://github.com/patil-suraj/vqgan-jax.git\n",
52
+ "!pip install -q git+https://github.com/borisdayma/dalle-mini.git"
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "markdown",
57
+ "metadata": {
58
+ "id": "ozHzTkyv8cqU"
59
+ },
60
+ "source": [
61
+ "We load required models:\n",
62
+ "* dalle·mini for text to encoded images\n",
63
+ "* VQGAN for decoding images\n",
64
+ "* CLIP for scoring predictions"
65
+ ]
66
+ },
67
+ {
68
+ "cell_type": "code",
69
+ "execution_count": null,
70
+ "metadata": {
71
+ "id": "K6CxW2o42f-w"
72
+ },
73
+ "outputs": [],
74
+ "source": [
75
+ "# Model references\n",
76
+ "\n",
77
+ "# dalle-mini\n",
78
+ "DALLE_MODEL = \"dalle-mini/dalle-mini/model-3f0lem84:latest\" # can be wandb artifact or 🤗 Hub or local folder or google bucket\n",
79
+ "DALLE_COMMIT_ID = None\n",
80
+ "\n",
81
+ "# VQGAN model\n",
82
+ "VQGAN_REPO = \"dalle-mini/vqgan_imagenet_f16_16384\"\n",
83
+ "VQGAN_COMMIT_ID = \"e93a26e7707683d349bf5d5c41c5b0ef69b677a9\"\n",
84
+ "\n",
85
+ "# CLIP model\n",
86
+ "CLIP_REPO = \"openai/clip-vit-large-patch14\"\n",
87
+ "CLIP_COMMIT_ID = None"
88
+ ]
89
+ },
90
+ {
91
+ "cell_type": "code",
92
+ "execution_count": null,
93
+ "metadata": {
94
+ "id": "Yv-aR3t4Oe5v"
95
+ },
96
+ "outputs": [],
97
+ "source": [
98
+ "import jax\n",
99
+ "import jax.numpy as jnp\n",
100
+ "\n",
101
+ "# check how many devices are available\n",
102
+ "jax.local_device_count()"
103
+ ]
104
+ },
105
+ {
106
+ "cell_type": "code",
107
+ "execution_count": null,
108
+ "metadata": {
109
+ "id": "HWnQrQuXOe5w"
110
+ },
111
+ "outputs": [],
112
+ "source": [
113
+ "# type used for computation - use bfloat16 on TPU's\n",
114
+ "dtype = jnp.bfloat16 if jax.local_device_count() == 8 else jnp.float32\n",
115
+ "\n",
116
+ "# TODO: fix issue with bfloat16\n",
117
+ "dtype = jnp.float32"
118
+ ]
119
+ },
120
+ {
121
+ "cell_type": "code",
122
+ "execution_count": null,
123
+ "metadata": {
124
+ "id": "92zYmvsQ38vL"
125
+ },
126
+ "outputs": [],
127
+ "source": [
128
+ "# Load models & tokenizer\n",
129
+ "from dalle_mini import DalleBart, DalleBartProcessor\n",
130
+ "from vqgan_jax.modeling_flax_vqgan import VQModel\n",
131
+ "from transformers import CLIPProcessor, FlaxCLIPModel\n",
132
+ "\n",
133
+ "# Load dalle-mini\n",
134
+ "model = DalleBart.from_pretrained(\n",
135
+ " DALLE_MODEL, revision=DALLE_COMMIT_ID, dtype=dtype, abstract_init=True\n",
136
+ ")\n",
137
+ "\n",
138
+ "# Load VQGAN\n",
139
+ "vqgan = VQModel.from_pretrained(VQGAN_REPO, revision=VQGAN_COMMIT_ID)\n",
140
+ "\n",
141
+ "# Load CLIP\n",
142
+ "clip = FlaxCLIPModel.from_pretrained(CLIP_REPO, revision=CLIP_COMMIT_ID)\n",
143
+ "clip_processor = CLIPProcessor.from_pretrained(CLIP_REPO, revision=CLIP_COMMIT_ID)"
144
+ ]
145
+ },
146
+ {
147
+ "cell_type": "markdown",
148
+ "metadata": {
149
+ "id": "o_vH2X1tDtzA"
150
+ },
151
+ "source": [
152
+ "Model parameters are replicated on each device for faster inference."
153
+ ]
154
+ },
155
+ {
156
+ "cell_type": "code",
157
+ "execution_count": null,
158
+ "metadata": {
159
+ "id": "wtvLoM48EeVw"
160
+ },
161
+ "outputs": [],
162
+ "source": [
163
+ "from flax.jax_utils import replicate\n",
164
+ "\n",
165
+ "# convert model parameters for inference if requested\n",
166
+ "if dtype == jnp.bfloat16:\n",
167
+ " model.params = model.to_bf16(model.params)\n",
168
+ "\n",
169
+ "model._params = replicate(model.params)\n",
170
+ "vqgan._params = replicate(vqgan.params)\n",
171
+ "clip._params = replicate(clip.params)"
172
+ ]
173
+ },
174
+ {
175
+ "cell_type": "markdown",
176
+ "metadata": {
177
+ "id": "0A9AHQIgZ_qw"
178
+ },
179
+ "source": [
180
+ "Model functions are compiled and parallelized to take advantage of multiple devices."
181
+ ]
182
+ },
183
+ {
184
+ "cell_type": "code",
185
+ "execution_count": null,
186
+ "metadata": {
187
+ "id": "sOtoOmYsSYPz"
188
+ },
189
+ "outputs": [],
190
+ "source": [
191
+ "from functools import partial\n",
192
+ "\n",
193
+ "# model inference\n",
194
+ "@partial(jax.pmap, axis_name=\"batch\", static_broadcasted_argnums=(3, 4, 5, 6))\n",
195
+ "def p_generate(\n",
196
+ " tokenized_prompt, key, params, top_k, top_p, temperature, condition_scale\n",
197
+ "):\n",
198
+ " return model.generate(\n",
199
+ " **tokenized_prompt,\n",
200
+ " prng_key=key,\n",
201
+ " params=params,\n",
202
+ " top_k=top_k,\n",
203
+ " top_p=top_p,\n",
204
+ " temperature=temperature,\n",
205
+ " condition_scale=condition_scale,\n",
206
+ " )\n",
207
+ "\n",
208
+ "\n",
209
+ "# decode images\n",
210
+ "@partial(jax.pmap, axis_name=\"batch\")\n",
211
+ "def p_decode(indices, params):\n",
212
+ " return vqgan.decode_code(indices, params=params)\n",
213
+ "\n",
214
+ "\n",
215
+ "# score images\n",
216
+ "@partial(jax.pmap, axis_name=\"batch\")\n",
217
+ "def p_clip(inputs, params):\n",
218
+ " logits = clip(params=params, **inputs).logits_per_image\n",
219
+ " return logits"
220
+ ]
221
+ },
222
+ {
223
+ "cell_type": "markdown",
224
+ "metadata": {
225
+ "id": "HmVN6IBwapBA"
226
+ },
227
+ "source": [
228
+ "Keys are passed to the model on each device to generate unique inference per device."
229
+ ]
230
+ },
231
+ {
232
+ "cell_type": "code",
233
+ "execution_count": null,
234
+ "metadata": {
235
+ "id": "4CTXmlUkThhX"
236
+ },
237
+ "outputs": [],
238
+ "source": [
239
+ "import random\n",
240
+ "\n",
241
+ "# create a random key\n",
242
+ "seed = random.randint(0, 2**32 - 1)\n",
243
+ "key = jax.random.PRNGKey(seed)"
244
+ ]
245
+ },
246
+ {
247
+ "cell_type": "markdown",
248
+ "metadata": {
249
+ "id": "BrnVyCo81pij"
250
+ },
251
+ "source": [
252
+ "## 🖍 Text Prompt"
253
+ ]
254
+ },
255
+ {
256
+ "cell_type": "markdown",
257
+ "metadata": {
258
+ "id": "rsmj0Aj5OQox"
259
+ },
260
+ "source": [
261
+ "Our model requires processing prompts."
262
+ ]
263
+ },
264
+ {
265
+ "cell_type": "code",
266
+ "execution_count": null,
267
+ "metadata": {
268
+ "id": "YjjhUychOVxm"
269
+ },
270
+ "outputs": [],
271
+ "source": [
272
+ "from dalle_mini import DalleBartProcessor\n",
273
+ "\n",
274
+ "processor = DalleBartProcessor.from_pretrained(DALLE_MODEL, revision=DALLE_COMMIT_ID)"
275
+ ]
276
+ },
277
+ {
278
+ "cell_type": "markdown",
279
+ "metadata": {
280
+ "id": "BQ7fymSPyvF_"
281
+ },
282
+ "source": [
283
+ "Let's define a text prompt."
284
+ ]
285
+ },
286
+ {
287
+ "cell_type": "code",
288
+ "execution_count": null,
289
+ "metadata": {
290
+ "id": "x_0vI9ge1oKr"
291
+ },
292
+ "outputs": [],
293
+ "source": [
294
+ "prompt = \"sunset over the lake in the mountains\""
295
+ ]
296
+ },
297
+ {
298
+ "cell_type": "code",
299
+ "execution_count": null,
300
+ "metadata": {
301
+ "id": "VKjEZGjtO49k"
302
+ },
303
+ "outputs": [],
304
+ "source": [
305
+ "tokenized_prompt = processor([prompt])"
306
+ ]
307
+ },
308
+ {
309
+ "cell_type": "markdown",
310
+ "metadata": {
311
+ "id": "-CEJBnuJOe5z"
312
+ },
313
+ "source": [
314
+ "Finally we replicate it onto each device."
315
+ ]
316
+ },
317
+ {
318
+ "cell_type": "code",
319
+ "execution_count": null,
320
+ "metadata": {
321
+ "id": "lQePgju5Oe5z"
322
+ },
323
+ "outputs": [],
324
+ "source": [
325
+ "tokenized_prompt = replicate(tokenized_prompt)"
326
+ ]
327
+ },
328
+ {
329
+ "cell_type": "markdown",
330
+ "metadata": {
331
+ "id": "phQ9bhjRkgAZ"
332
+ },
333
+ "source": [
334
+ "## 🎨 Generate images\n",
335
+ "\n",
336
+ "We generate images using dalle-mini model and decode them with the VQGAN."
337
+ ]
338
+ },
339
+ {
340
+ "cell_type": "code",
341
+ "execution_count": null,
342
+ "metadata": {
343
+ "id": "d0wVkXpKqnHA"
344
+ },
345
+ "outputs": [],
346
+ "source": [
347
+ "# number of predictions\n",
348
+ "n_predictions = 32\n",
349
+ "\n",
350
+ "# We can customize top_k/top_p used for generating samples\n",
351
+ "gen_top_k = None\n",
352
+ "gen_top_p = None\n",
353
+ "temperature = 0.85\n",
354
+ "cond_scale = 3.0"
355
+ ]
356
+ },
357
+ {
358
+ "cell_type": "code",
359
+ "execution_count": null,
360
+ "metadata": {
361
+ "id": "SDjEx9JxR3v8"
362
+ },
363
+ "outputs": [],
364
+ "source": [
365
+ "from flax.training.common_utils import shard_prng_key\n",
366
+ "import numpy as np\n",
367
+ "from PIL import Image\n",
368
+ "from tqdm.notebook import trange\n",
369
+ "\n",
370
+ "# generate images\n",
371
+ "images = []\n",
372
+ "for i in trange(n_predictions // jax.device_count()):\n",
373
+ " # get a new key\n",
374
+ " key, subkey = jax.random.split(key)\n",
375
+ " # generate images\n",
376
+ " encoded_images = p_generate(\n",
377
+ " tokenized_prompt,\n",
378
+ " shard_prng_key(subkey),\n",
379
+ " model.params,\n",
380
+ " gen_top_k,\n",
381
+ " gen_top_p,\n",
382
+ " temperature,\n",
383
+ " cond_scale,\n",
384
+ " )\n",
385
+ " # remove BOS\n",
386
+ " encoded_images = encoded_images.sequences[..., 1:]\n",
387
+ " # decode images\n",
388
+ " decoded_images = p_decode(encoded_images, vqgan.params)\n",
389
+ " decoded_images = decoded_images.clip(0.0, 1.0).reshape((-1, 256, 256, 3))\n",
390
+ " for img in decoded_images:\n",
391
+ " images.append(Image.fromarray(np.asarray(img * 255, dtype=np.uint8)))"
392
+ ]
393
+ },
394
+ {
395
+ "cell_type": "markdown",
396
+ "metadata": {
397
+ "id": "tw02wG9zGmyB"
398
+ },
399
+ "source": [
400
+ "Let's calculate their score with CLIP."
401
+ ]
402
+ },
403
+ {
404
+ "cell_type": "code",
405
+ "execution_count": null,
406
+ "metadata": {
407
+ "id": "FoLXpjCmGpju"
408
+ },
409
+ "outputs": [],
410
+ "source": [
411
+ "from flax.training.common_utils import shard\n",
412
+ "\n",
413
+ "# get clip scores\n",
414
+ "clip_inputs = clip_processor(\n",
415
+ " text=[prompt] * jax.device_count(),\n",
416
+ " images=images,\n",
417
+ " return_tensors=\"np\",\n",
418
+ " padding=\"max_length\",\n",
419
+ " max_length=77,\n",
420
+ " truncation=True,\n",
421
+ ").data\n",
422
+ "logits = p_clip(shard(clip_inputs), clip.params)\n",
423
+ "logits = logits.squeeze().flatten()"
424
+ ]
425
+ },
426
+ {
427
+ "cell_type": "markdown",
428
+ "metadata": {
429
+ "id": "4AAWRm70LgED"
430
+ },
431
+ "source": [
432
+ "Let's display images ranked by CLIP score."
433
+ ]
434
+ },
435
+ {
436
+ "cell_type": "code",
437
+ "execution_count": null,
438
+ "metadata": {
439
+ "id": "zsgxxubLLkIu"
440
+ },
441
+ "outputs": [],
442
+ "source": [
443
+ "print(f\"Prompt: {prompt}\\n\")\n",
444
+ "for idx in logits.argsort()[::-1]:\n",
445
+ " display(images[idx])\n",
446
+ " print(f\"Score: {logits[idx]:.2f}\\n\")"
447
+ ]
448
+ }
449
+ ],
450
+ "metadata": {
451
+ "accelerator": "GPU",
452
+ "colab": {
453
+ "collapsed_sections": [],
454
+ "include_colab_link": true,
455
+ "machine_shape": "hm",
456
+ "name": "DALL·E mini - Inference pipeline.ipynb",
457
+ "provenance": []
458
+ },
459
+ "kernelspec": {
460
+ "display_name": "Python 3 (ipykernel)",
461
+ "language": "python",
462
+ "name": "python3"
463
+ },
464
+ "language_info": {
465
+ "codemirror_mode": {
466
+ "name": "ipython",
467
+ "version": 3
468
+ },
469
+ "file_extension": ".py",
470
+ "mimetype": "text/x-python",
471
+ "name": "python",
472
+ "nbconvert_exporter": "python",
473
+ "pygments_lexer": "ipython3",
474
+ "version": "3.9.7"
475
+ }
476
+ },
477
+ "nbformat": 4,
478
+ "nbformat_minor": 0
479
+ }
tools/train/config/medium/config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_dropout": 0.0,
3
+ "activation_function": "gelu",
4
+ "attention_dropout": 0.0,
5
+ "bos_token_id": 16385,
6
+ "d_model": 1408,
7
+ "decoder_attention_heads": 16,
8
+ "decoder_ffn_dim": 4096,
9
+ "decoder_layerdrop": 0.0,
10
+ "decoder_layers": 14,
11
+ "decoder_start_token_id": 16384,
12
+ "dropout": 0.0,
13
+ "encoder_attention_heads": 16,
14
+ "encoder_ffn_dim": 4096,
15
+ "encoder_layerdrop": 0.0,
16
+ "encoder_layers": 14,
17
+ "encoder_vocab_size": 50264,
18
+ "eos_token_id": 16385,
19
+ "gradient_checkpointing": false,
20
+ "image_length": 256,
21
+ "image_vocab_size": 16384,
22
+ "init_std": 0.01,
23
+ "is_encoder_decoder": true,
24
+ "max_text_length": 64,
25
+ "model_type": "dallebart",
26
+ "normalize_text": true,
27
+ "pad_token_id": 16385,
28
+ "scale_embedding": false,
29
+ "tie_word_embeddings": false,
30
+ "use_cache": true
31
+ }
tools/train/config/mega/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_dropout": 0.0,
3
+ "activation_function": "gelu",
4
+ "attention_dropout": 0.0,
5
+ "bos_token_id": 16385,
6
+ "d_model": 2048,
7
+ "decoder_attention_heads": 32,
8
+ "decoder_ffn_dim": 8192,
9
+ "decoder_layerdrop": 0.0,
10
+ "decoder_layers": 24,
11
+ "decoder_start_token_id": 16384,
12
+ "dropout": 0.0,
13
+ "encoder_attention_heads": 32,
14
+ "encoder_ffn_dim": 8192,
15
+ "encoder_layerdrop": 0.0,
16
+ "encoder_layers": 24,
17
+ "encoder_vocab_size": 50264,
18
+ "eos_token_id": 16385,
19
+ "image_length": 256,
20
+ "image_vocab_size": 16391,
21
+ "init_std": 0.01,
22
+ "is_encoder_decoder": true,
23
+ "max_text_length": 64,
24
+ "model_type": "dallebart",
25
+ "normalize_text": true,
26
+ "pad_token_id": 16385,
27
+ "scale_embedding": false,
28
+ "tie_word_embeddings": false,
29
+ "use_cache": true
30
+ }
tools/train/config/micro/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_dropout": 0.0,
3
+ "activation_function": "gelu",
4
+ "attention_dropout": 0.0,
5
+ "bos_token_id": 16385,
6
+ "d_model": 256,
7
+ "decoder_attention_heads": 2,
8
+ "decoder_ffn_dim": 256,
9
+ "decoder_layerdrop": 0.0,
10
+ "decoder_layers": 2,
11
+ "decoder_start_token_id": 16384,
12
+ "dropout": 0.0,
13
+ "encoder_attention_heads": 2,
14
+ "encoder_ffn_dim": 256,
15
+ "encoder_layerdrop": 0.0,
16
+ "encoder_layers": 2,
17
+ "encoder_vocab_size": 50264,
18
+ "eos_token_id": 16385,
19
+ "image_length": 256,
20
+ "image_vocab_size": 16391,
21
+ "init_std": 0.02,
22
+ "is_encoder_decoder": true,
23
+ "max_text_length": 64,
24
+ "model_type": "dallebart",
25
+ "normalize_text": true,
26
+ "pad_token_id": 16385,
27
+ "scale_embedding": false,
28
+ "tie_word_embeddings": false,
29
+ "use_cache": true
30
+ }
tools/train/config/mini/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_dropout": 0.0,
3
+ "activation_function": "gelu",
4
+ "attention_dropout": 0.0,
5
+ "bos_token_id": 16385,
6
+ "d_model": 1024,
7
+ "decoder_attention_heads": 16,
8
+ "decoder_ffn_dim": 4096,
9
+ "decoder_layers": 12,
10
+ "decoder_start_token_id": 16384,
11
+ "dropout": 0.0,
12
+ "encoder_attention_heads": 16,
13
+ "encoder_ffn_dim": 4096,
14
+ "encoder_layers": 12,
15
+ "encoder_vocab_size": 50264,
16
+ "eos_token_id": 16385,
17
+ "gradient_checkpointing": false,
18
+ "image_length": 256,
19
+ "image_vocab_size": 16384,
20
+ "init_std": 0.02,
21
+ "is_encoder_decoder": true,
22
+ "max_text_length": 64,
23
+ "model_type": "dallebart",
24
+ "normalize_text": true,
25
+ "pad_token_id": 16385,
26
+ "scale_embedding": false,
27
+ "tie_word_embeddings": false,
28
+ "use_cache": true
29
+ }
tools/train/config/mini_glu/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_dropout": 0.0,
3
+ "activation_function": "gelu",
4
+ "attention_dropout": 0.0,
5
+ "bos_token_id": 16385,
6
+ "d_model": 1024,
7
+ "decoder_attention_heads": 16,
8
+ "decoder_ffn_dim": 2730,
9
+ "decoder_layers": 12,
10
+ "decoder_start_token_id": 16384,
11
+ "dropout": 0.0,
12
+ "encoder_attention_heads": 16,
13
+ "encoder_ffn_dim": 2730,
14
+ "encoder_layers": 12,
15
+ "encoder_vocab_size": 50264,
16
+ "eos_token_id": 16385,
17
+ "gradient_checkpointing": false,
18
+ "image_length": 256,
19
+ "image_vocab_size": 16384,
20
+ "init_std": 0.02,
21
+ "is_encoder_decoder": true,
22
+ "max_text_length": 64,
23
+ "model_type": "dallebart",
24
+ "normalize_text": true,
25
+ "pad_token_id": 16385,
26
+ "scale_embedding": false,
27
+ "tie_word_embeddings": false,
28
+ "use_cache": true
29
+ }
tools/train/scalable_shampoo/README.md ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ # Notes
2
+
3
+ Files copied from [google-research/scalable_shampoo/optax](https://github.com/google-research/google-research/tree/master/scalable_shampoo/optax).
4
+
5
+ Imports have been modified to be relative.
6
+
7
+ This will eventually be replaced with `optax-shampoo` package.
tools/train/scalable_shampoo/distributed_shampoo.py ADDED
@@ -0,0 +1,2267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The Google Research Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # An implementation of distributed Shampoo optimizer from:
17
+ #
18
+ # Scalable Second Order Optimization for Deep Learning
19
+ # Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, Yoram Singer
20
+ # Preprint Paper: https://arxiv.org/abs/2002.09018
21
+ #
22
+ # This implementation moves computation of inverse pth root back to the
23
+ # accelerator (if higher precision is available).
24
+ #
25
+ # Authors: Rohan Anil (rohananil at google dot com)
26
+ # & Vineet Gupta (vineet at google dot com)
27
+ #
28
+ """Distributed Shampoo Implementation."""
29
+
30
+ import enum
31
+ import functools
32
+ import itertools
33
+ from typing import Any, List, NamedTuple, Tuple
34
+
35
+ import chex
36
+ import jax
37
+ import jax.experimental.pjit as pjit
38
+ import jax.numpy as jnp
39
+ import numpy as np
40
+ import optax
41
+ from flax import struct
42
+ from jax import lax
43
+
44
+ from .quantization_utils import QuantizedValue
45
+ from .symmetric_matrices import symmetric_matrices
46
+
47
+ # Dtype for inverse-pth root routine
48
+ # Switch to f64 if you have hardware that supports it. Enable the jax flag
49
+ # jax_enable_x64 for this to work, otherwise it will default to float32.
50
+ _MAT_INV_PTH_ROOT_DTYPE = jnp.float64
51
+
52
+
53
+ @struct.dataclass
54
+ class TrainingMetrics:
55
+ inverse_pth_root_errors: chex.Array # Error for inverse-pth roots.
56
+ # TODO(rohananil): Add more important metrics to track during training.
57
+
58
+
59
+ # Per parameter optimizer state used in data-parallel training.
60
+ class ParameterStats(NamedTuple):
61
+ """State associated to each parameter of the model being trained."""
62
+
63
+ diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner
64
+ statistics: List[Any] # Statistics (QuantizedValue, chex.Array)
65
+ preconditioners: List[Any] # Preconditioners (QuantizedValue, chex.Array)
66
+ diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner
67
+ momentum: QuantizedValue # Momentum for the shampoo preconditioner
68
+ training_metrics: TrainingMetrics # Metrics (optional for training).
69
+
70
+
71
+ # For training extremely large model; We keep a global state with a concatenated
72
+ # statistics and preconditioner states for all vars. This is so that we can
73
+ # annotate the leading axis to be sharded to save memory at the cost of
74
+ # communication.
75
+ @struct.dataclass
76
+ class GlobalShardedParameterStats:
77
+ statistics: chex.Array # Statistics
78
+ preconditioners: chex.Array # Preconditioners
79
+ exponents: chex.Array # exponents
80
+
81
+
82
+ # These are per-parameter local states; All statistics here mirror the parameter
83
+ # Thus the sharding is copied over from the param specification.
84
+ @struct.dataclass
85
+ class LocalShardedParameterStats:
86
+ """State associated to each parameter of the model being trained."""
87
+
88
+ diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner
89
+ diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner
90
+ momentum: QuantizedValue # Momentum for the shampoo preconditioner
91
+ training_metrics: TrainingMetrics # Metrics (optional for training).
92
+ index_start: np.int32 = struct.field(
93
+ pytree_node=False
94
+ ) # Index into global statistics array
95
+ sizes: Any = struct.field(pytree_node=False) # Sizes of the statistics.
96
+
97
+
98
+ def init_training_metrics(num_statistics):
99
+ # Since the downstream apis expect a jnp.array - we create a dummy one if
100
+ # num_statistics=0.
101
+ n = 1 if not num_statistics else num_statistics
102
+ return TrainingMetrics(jnp.zeros([n], jnp.float32))
103
+
104
+
105
+ def init_training_metrics_shapes(num_statistics):
106
+ # Since the downstream apis expect a jnp.array - we create a dummy one if
107
+ # num_statistics=0.
108
+ n = 1 if not num_statistics else num_statistics
109
+ return TrainingMetrics([[n], jnp.float32])
110
+
111
+
112
+ def init_training_metrics_pspec():
113
+ return TrainingMetrics(pjit.PartitionSpec())
114
+
115
+
116
+ class ShardedShampooStats(NamedTuple):
117
+ """Shampoo state in sharded mode."""
118
+
119
+ global_stats: Any
120
+ local_stats: Any
121
+
122
+
123
+ class ShampooState(NamedTuple):
124
+ count: chex.Array
125
+ stats: Any
126
+
127
+
128
+ class InitFnState(NamedTuple):
129
+ init_fn: Any
130
+ pspec_fn: Any
131
+ shape_and_dtype_fn: Any
132
+
133
+
134
+ class GraftingType(enum.IntEnum):
135
+ SGD = 1
136
+ ADAGRAD = 2
137
+ RMSPROP = 3
138
+ RMSPROP_NORMALIZED = 4
139
+ SQRT_N = 5
140
+ ADAGRAD_NORMALIZED = 6
141
+
142
+
143
+ def power_iteration(
144
+ matrix,
145
+ num_iters=100,
146
+ error_tolerance=1e-6,
147
+ precision=lax.Precision.HIGHEST,
148
+ ):
149
+ r"""Power iteration algorithm.
150
+
151
+ The power iteration algorithm takes a symmetric PSD matrix `A`, and produces
152
+ a scalar `\lambda` , which is the greatest (in absolute value) eigenvalue
153
+ of `A`, and a vector v, which is the corresponding eigenvector of `A`.
154
+
155
+ References:
156
+ [Wikipedia, 2021](https://en.wikipedia.org/wiki/Power_iteration)
157
+
158
+ Args:
159
+ matrix: the symmetric PSD matrix.
160
+ num_iters: Number of iterations.
161
+ error_tolerance: Iterative exit condition.
162
+ precision: precision XLA related flag, the available options are: a)
163
+ lax.Precision.DEFAULT (better step time, but not precise) b)
164
+ lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST
165
+ (best possible precision, slowest)
166
+
167
+ Returns:
168
+ eigen vector, eigen value
169
+ """
170
+ matrix_size = matrix.shape[-1]
171
+
172
+ def _iter_condition(state):
173
+ i, unused_v, unused_s, unused_s_v, run_step = state
174
+ return jnp.logical_and(i < num_iters, run_step)
175
+
176
+ def _iter_body(state):
177
+ """One step of power iteration."""
178
+ i, new_v, s, s_v, unused_run_step = state
179
+ new_v = new_v / jnp.linalg.norm(new_v)
180
+
181
+ s_v = jnp.einsum("ij,j->i", matrix, new_v, precision=precision)
182
+ s_new = jnp.einsum("i,i->", new_v, s_v, precision=precision)
183
+ return (
184
+ i + 1,
185
+ s_v,
186
+ s_new,
187
+ s_v,
188
+ jnp.greater(jnp.abs(s_new - s), error_tolerance),
189
+ )
190
+
191
+ # Figure out how to use step as seed for random.
192
+ v_0 = (
193
+ np.random.RandomState(1729).uniform(-1.0, 1.0, matrix_size).astype(matrix.dtype)
194
+ )
195
+
196
+ init_state = tuple([0, v_0, jnp.zeros([], dtype=matrix.dtype), v_0, True])
197
+ _, v_out, s_out, _, _ = lax.while_loop(_iter_condition, _iter_body, init_state)
198
+ v_out = v_out / jnp.linalg.norm(v_out)
199
+ return v_out, s_out
200
+
201
+
202
+ def mat_power(
203
+ mat_m,
204
+ p,
205
+ precision=lax.Precision.HIGHEST,
206
+ ):
207
+ """A simple matrix power method. M^p where p can be TracedValue."""
208
+ power = jnp.eye(mat_m.shape[0], dtype=_MAT_INV_PTH_ROOT_DTYPE)
209
+
210
+ def _iter_condition(state):
211
+ i, _, _ = state
212
+ return i > 0
213
+
214
+ def _iter_body(state):
215
+ i, power, mat = state
216
+
217
+ power = jax.lax.cond(
218
+ i % 2 == 1,
219
+ lambda: jnp.matmul(mat, power, precision=precision),
220
+ lambda: power,
221
+ )
222
+ i //= 2
223
+ mat = jnp.matmul(mat, mat, precision=precision)
224
+ return i, power, mat
225
+
226
+ _, result, _ = lax.while_loop(_iter_condition, _iter_body, (p, power, mat_m))
227
+ return result
228
+
229
+
230
+ def matrix_inverse_pth_root(
231
+ matrix,
232
+ p,
233
+ num_iters=100,
234
+ ridge_epsilon=1e-6,
235
+ error_tolerance=1e-6,
236
+ precision=lax.Precision.HIGHEST,
237
+ ):
238
+ """Computes `matrix^(-1/p)`, where `p` is a positive integer.
239
+
240
+ This function uses the Coupled newton iterations algorithm for
241
+ the computation of a matrix's inverse pth root.
242
+
243
+
244
+ References:
245
+ [Functions of Matrices, Theory and Computation,
246
+ Nicholas J Higham, Pg 184, Eq 7.18](
247
+ https://epubs.siam.org/doi/book/10.1137/1.9780898717778)
248
+
249
+ Args:
250
+ matrix: the symmetric PSD matrix whose power it to be computed
251
+ p: exponent, for p a positive integer.
252
+ num_iters: Maximum number of iterations.
253
+ ridge_epsilon: Ridge epsilon added to make the matrix positive definite.
254
+ error_tolerance: Error indicator, useful for early termination.
255
+ precision: precision XLA related flag, the available options are: a)
256
+ lax.Precision.DEFAULT (better step time, but not precise) b)
257
+ lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST
258
+ (best possible precision, slowest)
259
+
260
+ Returns:
261
+ matrix^(-1/p)
262
+ """
263
+
264
+ # If the input is not square, materialize it from the concatenated form.
265
+ if matrix.shape[0] != matrix.shape[1]:
266
+ matrix = symmetric_matrices.materialize_matrix_from_concat(matrix)
267
+
268
+ assert matrix.shape[0] == matrix.shape[1]
269
+
270
+ # We use _MAT_INV_PTH_ROOT_DTYPE for the matrix inverse pth root.
271
+ # Switch to f64 if you have hardware that supports it. Enable the jax flag
272
+ # jax_enable_x64 for this to work.
273
+ matrix_size = matrix.shape[0]
274
+ orig_dtype = matrix.dtype
275
+ matrix = matrix.astype(_MAT_INV_PTH_ROOT_DTYPE)
276
+ alpha = jnp.asarray(-1.0 / p, _MAT_INV_PTH_ROOT_DTYPE)
277
+ identity = jnp.eye(matrix_size, dtype=_MAT_INV_PTH_ROOT_DTYPE)
278
+ _, max_ev = power_iteration(
279
+ matrix=matrix, num_iters=100, error_tolerance=1e-6, precision=precision
280
+ )
281
+ ridge_epsilon = ridge_epsilon * jnp.maximum(max_ev, 1e-6)
282
+
283
+ def _iter_condition(state):
284
+ (i, unused_mat_m, unused_mat_h, unused_old_mat_h, error, run_step) = state
285
+ error_above_threshold = jnp.logical_and(error > error_tolerance, run_step)
286
+ return jnp.logical_and(i < num_iters, error_above_threshold)
287
+
288
+ def _iter_body(state):
289
+ (i, mat_m, mat_h, unused_old_mat_h, error, unused_run_step) = state
290
+ mat_m_i = (1 - alpha) * identity + alpha * mat_m
291
+ new_mat_m = jnp.matmul(mat_power(mat_m_i, p), mat_m, precision=precision)
292
+ new_mat_h = jnp.matmul(mat_h, mat_m_i, precision=precision)
293
+ new_error = jnp.max(jnp.abs(new_mat_m - identity))
294
+ # sometimes error increases after an iteration before decreasing and
295
+ # converging. 1.2 factor is used to bound the maximal allowed increase.
296
+ return (i + 1, new_mat_m, new_mat_h, mat_h, new_error, new_error < error * 1.2)
297
+
298
+ if matrix_size == 1:
299
+ resultant_mat_h = (matrix + ridge_epsilon) ** alpha
300
+ error = 0
301
+ else:
302
+ damped_matrix = matrix + ridge_epsilon * identity
303
+
304
+ z = (1 + p) / (2 * jnp.linalg.norm(damped_matrix))
305
+ new_mat_m_0 = damped_matrix * z
306
+ new_error = jnp.max(jnp.abs(new_mat_m_0 - identity))
307
+ new_mat_h_0 = identity * jnp.power(z, 1.0 / p)
308
+ init_state = tuple([0, new_mat_m_0, new_mat_h_0, new_mat_h_0, new_error, True])
309
+ _, mat_m, mat_h, old_mat_h, error, convergence = lax.while_loop(
310
+ _iter_condition, _iter_body, init_state
311
+ )
312
+ error = jnp.max(jnp.abs(mat_m - identity)).astype(jnp.float32)
313
+ is_converged = jnp.asarray(convergence, old_mat_h.dtype)
314
+ resultant_mat_h = is_converged * mat_h + (1 - is_converged) * old_mat_h
315
+ resultant_mat_h = jnp.asarray(resultant_mat_h, orig_dtype)
316
+ return resultant_mat_h, error
317
+
318
+
319
+ def merge_small_dims(shape_to_merge, max_dim):
320
+ """Merge small dimensions.
321
+
322
+ If there are some small dimensions, we collapse them:
323
+ e.g. [1, 2, 512, 1, 2048, 1, 3, 4] --> [1024, 2048, 12] if max_dim = 1024
324
+ [1, 2, 768, 1, 2048] --> [2, 768, 2048]
325
+
326
+ Args:
327
+ shape_to_merge: Shape to merge small dimensions.
328
+ max_dim: Maximal dimension of output shape used in merging.
329
+
330
+ Returns:
331
+ Merged shape.
332
+ """
333
+ if shape_to_merge and np.all(np.array(shape_to_merge) == 1):
334
+ return [1]
335
+
336
+ resulting_shape = []
337
+ product = 1
338
+ for d in shape_to_merge:
339
+ if product * d <= max_dim:
340
+ product *= d
341
+ else:
342
+ if product > 1:
343
+ resulting_shape.append(product)
344
+ product = d
345
+ if product > 1:
346
+ resulting_shape.append(product)
347
+ return resulting_shape
348
+
349
+
350
+ def pad_square_matrix(mat, max_size):
351
+ """Pad a square matrix up to max_size.
352
+
353
+ Args:
354
+ mat: a matrix to pad.
355
+ max_size: matrix size requested.
356
+
357
+ Returns:
358
+ Given M returns [[M, 0], [0, I]]
359
+ """
360
+ rows, cols = mat.shape
361
+ if rows != cols:
362
+ raise ValueError(
363
+ "Must have rows == cols, instead got " f"rows={rows}, cols={cols}"
364
+ )
365
+ if cols > max_size:
366
+ raise ValueError(
367
+ "Must have cols <= max_size. Instead got "
368
+ f"cols={cols}, max_size={max_size}."
369
+ )
370
+ if rows == max_size:
371
+ return mat
372
+ pad_size = max_size - rows
373
+
374
+ zs1 = jnp.zeros([rows, pad_size], dtype=mat.dtype)
375
+ zs2 = jnp.zeros([pad_size, rows], dtype=mat.dtype)
376
+ eye = jnp.eye(pad_size, dtype=mat.dtype)
377
+ mat = jnp.concatenate([mat, zs1], 1)
378
+ mat = jnp.concatenate([mat, jnp.concatenate([zs2, eye], 1)], 0)
379
+ return mat
380
+
381
+
382
+ def make_sliced_padding(
383
+ symmetric_block_size,
384
+ num_blocks,
385
+ starting_block,
386
+ dtype,
387
+ ):
388
+ """Returns padding for symmetric block matrix.
389
+
390
+ Specifically, the padding is given concatenated rectangular matrices
391
+ representing the lower-triangular rows below the starting block. For example,
392
+ if we want to pad the symmetric matrix
393
+
394
+ M = [[A, B^T]
395
+ [B, C]],
396
+
397
+ the desired output (in terms of the full matrix) with num_blocks = 4 is
398
+
399
+ M_padded = [[A, B^T, 0, 0]
400
+ [B, C, 0, 0]
401
+ [0, 0, I, 0]
402
+ 0, 0, 0, I].
403
+
404
+ We would represent M as the block matrix mat = [A, B, C]. In this form, the
405
+ additional padding to provide has form [0, 0, I, 0, 0, 0, I] (only the lower
406
+ triangular parts in the third and fourth rows).
407
+
408
+ Args:
409
+ symmetric_block_size: The size of each block.
410
+ num_blocks: The total number of blocks.
411
+ starting_block: The block where to start the padding.
412
+ dtype: The type to use for the blocks.
413
+ """
414
+ if starting_block == num_blocks:
415
+ return jnp.zeros(shape=(symmetric_block_size, 0), dtype=dtype)
416
+
417
+ blocks = []
418
+ for i in range(starting_block, num_blocks):
419
+ blocks.append(
420
+ jnp.zeros(
421
+ shape=(symmetric_block_size, symmetric_block_size * i), dtype=dtype
422
+ )
423
+ )
424
+ blocks.append(jnp.eye(symmetric_block_size, dtype=dtype))
425
+ return jnp.concatenate(blocks, axis=-1)
426
+
427
+
428
+ def pad_block_symmetric_matrix(
429
+ mat,
430
+ symmetric_block_size,
431
+ max_num_blocks,
432
+ ):
433
+ """Returns the padded blocked symmetric matrix.
434
+
435
+ The size of the padded matrix will be:
436
+ [symmetric_block_size, symmetric_block_size * max_num_blocks]
437
+
438
+ The input matrix can either:
439
+ - Be square with size less or equal to symmetric_block_size. In this case,
440
+ mat will first be padded to a square matrix of size symmetric_block_size,
441
+ and then be padded again up to the full size of the blocked matrix.
442
+ - Be a rectangle with number of rows equal to block size.
443
+ In this case, number of columns must be a multiple of number of rows, and
444
+ the ratio must correspond to a block representation of a symmetric matrix.
445
+ That is, the ratio must have form x * (x + 1) / 2. Here, x represents the
446
+ number of block rows represented by the matrix.
447
+
448
+ Args:
449
+ mat: The input block matrix.
450
+ symmetric_block_size: The size of blocks.
451
+ max_num_blocks: The largest number of blocks to pad to.
452
+ """
453
+ rows, cols = mat.shape
454
+ if rows > symmetric_block_size:
455
+ raise ValueError(
456
+ "Must have rows <= symmetric_block_size. Instead got "
457
+ f"rows={rows}, symmetric_block_size={symmetric_block_size}."
458
+ )
459
+ if rows > cols:
460
+ raise ValueError(
461
+ "Must have rows <= cols, instead got " f"rows={rows}, cols={cols}."
462
+ )
463
+ if cols > symmetric_block_size * max_num_blocks:
464
+ raise ValueError(
465
+ "Must have cols <= symmetric_block_size * max_num_blocks "
466
+ f"Instead got cols={cols}, "
467
+ f"symmetric_block_size={symmetric_block_size}, "
468
+ f"max_num_blocks={max_num_blocks}."
469
+ )
470
+ if rows < symmetric_block_size:
471
+ mat = pad_square_matrix(mat, max_size=symmetric_block_size)
472
+ # Update rows and cols after possibly padding in pad_square_matrix.
473
+ rows, cols = mat.shape
474
+ assert rows == symmetric_block_size
475
+ assert cols % rows == 0
476
+ filled_blocks = cols // rows
477
+ padding_blocks = make_sliced_padding(
478
+ symmetric_block_size=symmetric_block_size,
479
+ num_blocks=symmetric_matrices.num_blocks_from_total_blocks(max_num_blocks),
480
+ starting_block=symmetric_matrices.num_blocks_from_total_blocks(filled_blocks),
481
+ dtype=mat.dtype,
482
+ )
483
+ return jnp.concatenate([mat, padding_blocks], axis=-1)
484
+
485
+
486
+ def pad_vector(vec, max_size):
487
+ """Pad a vector to a max_size.
488
+
489
+ Args:
490
+ vec: a vector to pad.
491
+ max_size: matrix size requested.
492
+
493
+ Returns:
494
+ Given V returns [V, 0]
495
+ """
496
+ size = vec.shape[0]
497
+ assert size <= max_size
498
+ if size == max_size:
499
+ return vec
500
+ pad_size = max_size - size
501
+ zs1 = jnp.zeros([pad_size], dtype=vec.dtype)
502
+ return jnp.concatenate([vec, zs1], 0)
503
+
504
+
505
+ def efficient_cond(predicate, compute_fn, init_state, *args, **kwargs):
506
+ """Avoids wasteful buffer allocation with XLA."""
507
+
508
+ def _iter_body(unused_state):
509
+ results = compute_fn(*args, **kwargs)
510
+ return tuple([False] + list(results))
511
+
512
+ def _iter_condition(state):
513
+ return state[0]
514
+
515
+ results = jax.lax.while_loop(
516
+ _iter_condition, _iter_body, tuple([predicate] + init_state)
517
+ )
518
+ return tuple(results[1:])
519
+
520
+
521
+ class BlockPartitioner:
522
+ """Partitions a tensor into smaller tensors."""
523
+
524
+ def __init__(self, param, block_size):
525
+ self._shape = param.shape
526
+ self._splits = []
527
+ split_sizes = []
528
+ # We split params into smaller blocks. Here we store the metadata to make
529
+ # that split.
530
+ for i, d in enumerate(param.shape):
531
+ if 0 < block_size < d:
532
+ # d-1, otherwise split appends a 0-size array.
533
+ nsplit = (d - 1) // block_size
534
+ indices = (np.arange(nsplit, dtype=np.int32) + 1) * block_size
535
+ sizes = np.ones(nsplit + 1, dtype=np.int32) * block_size
536
+ sizes[-1] = d - indices[-1]
537
+ self._splits.append((i, indices))
538
+ split_sizes.append(sizes)
539
+ else:
540
+ split_sizes.append(np.array([d], dtype=np.int32))
541
+ self._num_splits = len(split_sizes)
542
+ self._preconditioner_shapes = []
543
+ for t in itertools.product(*split_sizes):
544
+ self._preconditioner_shapes.extend([[d, d] for d in t])
545
+
546
+ def shapes_for_preconditioners(self):
547
+ return self._preconditioner_shapes
548
+
549
+ def num_splits(self):
550
+ return self._num_splits
551
+
552
+ def partition(self, tensor):
553
+ """Partition tensor into blocks."""
554
+
555
+ assert tensor.shape == self._shape
556
+ tensors = [tensor]
557
+ for (i, indices) in self._splits:
558
+ tensors_local = []
559
+ for t in tensors:
560
+ tensors_local.extend(jnp.split(t, indices_or_sections=indices, axis=i))
561
+ tensors = tensors_local
562
+ return tensors
563
+
564
+ def merge_partitions(self, partitions):
565
+ """Merge partitions back to original shape."""
566
+
567
+ for (i, indices) in reversed(self._splits):
568
+ n = len(indices) + 1
569
+ partial_merged_tensors = []
570
+ ind = 0
571
+ while ind < len(partitions):
572
+ partial_merged_tensors.append(
573
+ jnp.concatenate(partitions[ind : ind + n], axis=i)
574
+ )
575
+ ind += n
576
+ partitions = partial_merged_tensors
577
+ assert len(partitions) == 1
578
+ return partitions[0]
579
+
580
+
581
+ class Preconditioner:
582
+ """Compute statistics/shape from gradients for preconditioning."""
583
+
584
+ def __init__(self, param, block_size, best_effort_shape_interpretation):
585
+ self._original_shape = param.shape
586
+ self._transformed_shape = param.shape
587
+ if best_effort_shape_interpretation:
588
+ self._transformed_shape = merge_small_dims(self._original_shape, block_size)
589
+ reshaped_param = jnp.reshape(param, self._transformed_shape)
590
+ self._partitioner = BlockPartitioner(reshaped_param, block_size)
591
+
592
+ def statistics_from_grad(self, grad):
593
+ """Compute statistics from gradients.
594
+
595
+ Args:
596
+ grad: Gradient to compute statistics from.
597
+
598
+ Returns:
599
+ A list of gradient statistics for each partition.
600
+ """
601
+ reshaped_grad = jnp.reshape(grad, self._transformed_shape)
602
+ partitioned_grads = self._partitioner.partition(reshaped_grad)
603
+ stats = []
604
+ for g in partitioned_grads:
605
+ g_stats = []
606
+ rank = len(g.shape)
607
+ for i in range(rank):
608
+ axes = list(range(i)) + list(range(i + 1, rank))
609
+ stat = jnp.tensordot(g, g, axes=(axes, axes))
610
+ g_stats.append(stat)
611
+ stats.extend(g_stats)
612
+ return stats
613
+
614
+ def shapes_for_preconditioners(self):
615
+ """Returns shape from statistics."""
616
+ return self._partitioner.shapes_for_preconditioners()
617
+
618
+ def exponent_for_preconditioner(self):
619
+ """Returns exponent to use for inverse-pth root M^{-1/p}."""
620
+ return 2 * len(self._transformed_shape)
621
+
622
+ def preconditioned_grad(self, grad, preconditioners):
623
+ """Precondition the gradient.
624
+
625
+ Args:
626
+ grad: A gradient tensor to precondition.
627
+ preconditioners: A list of preconditioners to apply.
628
+
629
+ Returns:
630
+ A preconditioned gradient.
631
+ """
632
+
633
+ reshaped_grad = jnp.reshape(grad, self._transformed_shape)
634
+ partitioned_grads = self._partitioner.partition(reshaped_grad)
635
+ preconditioned_partitioned_grads = []
636
+ num_splits = self._partitioner.num_splits()
637
+ for i, g in enumerate(partitioned_grads):
638
+ preconditioners_for_grad = preconditioners[
639
+ i * num_splits : (i + 1) * num_splits
640
+ ]
641
+ rank = len(g.shape)
642
+ precond_g = g
643
+ for j in range(rank):
644
+ precond_g = jnp.tensordot(
645
+ precond_g, preconditioners_for_grad[j], axes=[[0], [0]]
646
+ )
647
+ preconditioned_partitioned_grads.append(precond_g)
648
+ merged_grad = self._partitioner.merge_partitions(
649
+ preconditioned_partitioned_grads
650
+ )
651
+ return jnp.reshape(merged_grad, self._original_shape)
652
+
653
+
654
+ def _convert_to_parameter_stats(global_stats, local_stat):
655
+ """Creates parameter stats from sharded stats."""
656
+ index_start = int(local_stat.index_start)
657
+ index_end = int(len(local_stat.sizes)) + index_start
658
+ statistics = global_stats.statistics[index_start:index_end, :, :]
659
+ preconditioners = global_stats.preconditioners[index_start:index_end, :, :]
660
+ new_statistics = []
661
+ new_preconditioners = []
662
+ for i, size in enumerate(local_stat.sizes):
663
+ new_statistics.append(statistics[i][:size, :size])
664
+ new_preconditioners.append(preconditioners[i][:size, :size])
665
+ return ParameterStats(
666
+ local_stat.diagonal_statistics,
667
+ new_statistics,
668
+ new_preconditioners,
669
+ local_stat.diagonal_momentum,
670
+ local_stat.momentum,
671
+ local_stat.training_metrics,
672
+ )
673
+
674
+
675
+ def _convert_from_parameter_stats(parameter_stats, local_stats):
676
+ """Creates sharded stats from paramter stats."""
677
+ return LocalShardedParameterStats(
678
+ parameter_stats.diagonal_statistics,
679
+ parameter_stats.diagonal_momentum,
680
+ parameter_stats.momentum,
681
+ parameter_stats.training_metrics,
682
+ local_stats.index_start,
683
+ local_stats.sizes,
684
+ )
685
+
686
+
687
+ def _add_error_into_local_stats(local_stats, errors, inverse_failure_threshold):
688
+ """Adds errors back into local statistics."""
689
+ new_local_stats = []
690
+ for local_stat in local_stats:
691
+ index_start = int(local_stat.index_start)
692
+ index_end = int(len(local_stat.sizes)) + index_start
693
+ per_stat_error = errors[index_start:index_end]
694
+ if local_stat.sizes:
695
+ per_stat_error = jnp.where(
696
+ jnp.logical_and(
697
+ per_stat_error > 0.0, per_stat_error != inverse_failure_threshold
698
+ ),
699
+ per_stat_error,
700
+ local_stat.training_metrics.inverse_pth_root_errors,
701
+ )
702
+ new_local_stats.append(
703
+ LocalShardedParameterStats(
704
+ local_stat.diagonal_statistics,
705
+ local_stat.diagonal_momentum,
706
+ local_stat.momentum,
707
+ TrainingMetrics(per_stat_error),
708
+ local_stat.index_start,
709
+ local_stat.sizes,
710
+ )
711
+ )
712
+ return new_local_stats
713
+
714
+
715
+ def batch(x, num_devices):
716
+ """Batch `x` so that so that leading axis is num_devices."""
717
+ n = len(x)
718
+ b = int(n / num_devices)
719
+ return jnp.stack([jnp.stack(x[idx : idx + b]) for idx in range(0, n, b)])
720
+
721
+
722
+ def unbatch(batched_values):
723
+ """Unbatch values across leading axis and return a list of elements."""
724
+ b1, b2 = batched_values.shape[0], batched_values.shape[1]
725
+ results = []
726
+ for v_array in jnp.split(batched_values, indices_or_sections=b1, axis=0):
727
+ v_array = jnp.squeeze(v_array)
728
+ # b2 = batches (number of preconditioner computation) per core.
729
+ if b2 > 1:
730
+ for v in jnp.split(v_array, indices_or_sections=b2, axis=0):
731
+ results.append(jnp.squeeze(v))
732
+ else:
733
+ results.append(v_array)
734
+ return results
735
+
736
+
737
+ def distributed_shampoo(
738
+ learning_rate,
739
+ block_size,
740
+ beta1=0.9,
741
+ beta2=0.999,
742
+ diagonal_epsilon=1e-10,
743
+ matrix_epsilon=1e-6,
744
+ weight_decay=0.0,
745
+ start_preconditioning_step=5,
746
+ preconditioning_compute_steps=1,
747
+ statistics_compute_steps=1,
748
+ best_effort_shape_interpretation=True,
749
+ graft_type=GraftingType.SGD,
750
+ nesterov=True,
751
+ exponent_override=0,
752
+ # Pass pmap 'batch axis name' in pmap mode.
753
+ batch_axis_name=None,
754
+ ### Only set following 3 params in pjit/spmd mode.
755
+ ### WARNING: Experimental
756
+ statistics_partition_spec=None,
757
+ preconditioner_partition_spec=None,
758
+ num_devices_for_pjit=None,
759
+ shard_optimizer_states=False,
760
+ ###
761
+ ### Experimental memory reduction mode
762
+ best_effort_memory_usage_reduction=False,
763
+ ###
764
+ inverse_failure_threshold=0.1,
765
+ moving_average_for_momentum=False,
766
+ skip_preconditioning_dim_size_gt=4096,
767
+ clip_by_scaled_gradient_norm=None,
768
+ precision=lax.Precision.HIGHEST,
769
+ ):
770
+ """Distributed Shampoo optimizer.
771
+
772
+ Distributed Shampoo is a second-order preconditioned method (concretely, a
773
+ variant of full-matrix Adagrad), that provides significant convergence and
774
+ wall-clock time improvements compared to conventional first-order methods,
775
+ and that has been shown to scale to large state-of-the-art deep learning
776
+ models.
777
+
778
+ References:
779
+ Scalable Second Order Optimization for Deep Learning,
780
+ Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, Yoram Singer
781
+
782
+ Preprint: https://arxiv.org/abs/2002.09018
783
+
784
+ Args:
785
+ learning_rate: the step size used to update the parameters.
786
+ block_size: Block size for large layers (if > 0). Preconditioning compute
787
+ operation is cubic in the dimension of the tensor. Block size allows us to
788
+ chunk the layers into sub-layers of maximal dimension dictated by this
789
+ value. Use 128 as default (increase if you have compute budget).
790
+ beta1: momentum parameter.
791
+ beta2: second moment averaging parameter.
792
+ diagonal_epsilon: epsilon for diagonal adagrad (only if layerwise grafting
793
+ to AdaGrad is enabled).
794
+ matrix_epsilon: epsilon to add to statistics before computing inverse pth
795
+ root. If you are running in f32 precision for inverse pth root
796
+ (recommended today) this can go upto 1e-6. If you have latest hardware
797
+ with native f64 precision, set this upto 1e-12.
798
+ weight_decay: Weight decay for regularization.
799
+ start_preconditioning_step: When to start Shampoo update before which
800
+ diagonal update is used. This is because we dont have enough information
801
+ to do stable inverse.
802
+ preconditioning_compute_steps: How often to compute preconditioner.
803
+ Performance tuning params for controlling memory and compute requirements.
804
+ Ideally set this and statistics_compute_steps params to 1.
805
+ statistics_compute_steps: How often to compute statistics.
806
+ best_effort_shape_interpretation: If there are some small dimensions,
807
+ collapse them e.g. [1, 2, 512, 1, 2048, 1, 3, 4] --> [1024, 2048, 12] if
808
+ block = 1024, [1, 2, 768, 1, 2048] --> [2, 768, 2048]
809
+ graft_type: Grafting is a technique to fix the layerwise scale of Shampoo
810
+ optimizer. This allows us to plugin the Shampoo optimizer into settings
811
+ where SGD/AdaGrad is already well tuned.
812
+ nesterov: Nesterov momentum.
813
+ exponent_override: Override the exponent used in matrix inverse.
814
+ batch_axis_name: labeled axis over pmap for data-parallel training the
815
+ optimizer used for.
816
+ statistics_partition_spec: PartitionSpec to be used in sharded mode.
817
+ preconditioner_partition_spec: PartitionSpec to be used in sharded mode.
818
+ num_devices_for_pjit: Number of devices to parallelize over when using pjit.
819
+ shard_optimizer_states: Shard optimizer states to save memory in model
820
+ parallel training.
821
+ best_effort_memory_usage_reduction: Best effort memory usage reduction. -
822
+ diagonal_statistics -> jnp.bfloat16 - momentum buffers (2x) -> jnp.int8 -
823
+ statistics, preconditioners -> jnp.int16 + diagonals
824
+ inverse_failure_threshold: numerics are hard and inverses fail sometimes; we
825
+ determine that using this threshold.
826
+ moving_average_for_momentum: Whether to use moving average for momentum
827
+ instead of exponential moving average.
828
+ skip_preconditioning_dim_size_gt: Skip if preconditioning dim size is
829
+ greater than this value.
830
+ clip_by_scaled_gradient_norm: Clip by scaled gradient norm (only useful when
831
+ using RMSProp Grafting).
832
+ precision: precision XLA related flag, the available options are: a)
833
+ lax.Precision.DEFAULT (better step time, but not precise) b)
834
+ lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST
835
+ (best possible precision, slowest)
836
+
837
+ Returns:
838
+ a GradientTransformation.
839
+ """
840
+
841
+ def _graft_type_has_diagonal_statistics():
842
+ """Returns True if using diagonal firt order method for grafting."""
843
+ return graft_type != GraftingType.SGD and graft_type != GraftingType.SQRT_N
844
+
845
+ def _graft_type_has_diagonal_momentum_states():
846
+ """Returns False if using SQRT_N for grafting."""
847
+ return graft_type != GraftingType.SQRT_N
848
+
849
+ def quantized_dtype_for_momentum_buffers():
850
+ return jnp.int8 if best_effort_memory_usage_reduction else jnp.float32
851
+
852
+ # TODO(rohananil): Explore int8-16 quantization with non-linear bucket sizes.
853
+ def quantized_dtype_for_diagonal_statistics_buffers():
854
+ return jnp.float32
855
+
856
+ # Preconditioner and statistics are both stores as int16 in this mode.
857
+ # We take out the diagonal to make quantization easier.
858
+ def quantized_dtype_for_second_moment_statistics_buffers():
859
+ return (
860
+ jnp.int16
861
+ if best_effort_memory_usage_reduction and batch_axis_name
862
+ else jnp.float32
863
+ )
864
+
865
+ # Preconditioner and statistics are both stores as int16 in this mode.
866
+ # We take out the diagonal to make quantization easier.
867
+ def quantized_dtype_for_second_moment_preconditioner_buffers():
868
+ return (
869
+ jnp.int16
870
+ if best_effort_memory_usage_reduction and batch_axis_name
871
+ else jnp.float32
872
+ )
873
+
874
+ def _to_float(maybe_quantized):
875
+ if isinstance(maybe_quantized, QuantizedValue):
876
+ return maybe_quantized.to_float()
877
+ else:
878
+ return maybe_quantized
879
+
880
+ def _maybe_quantize_statistics(statistics_list):
881
+ return _maybe_quantize_matrices_with_dtype(
882
+ statistics_list, quantized_dtype_for_second_moment_statistics_buffers()
883
+ )
884
+
885
+ def _maybe_quantize_preconditioners(statistics_list):
886
+ return _maybe_quantize_matrices_with_dtype(
887
+ statistics_list, quantized_dtype_for_second_moment_preconditioner_buffers()
888
+ )
889
+
890
+ def _maybe_quantize_matrices_with_dtype(statistics_list, quantized_dtype):
891
+ if quantized_dtype != jnp.float32:
892
+ return [
893
+ QuantizedValue.from_float_value(
894
+ s, quantized_dtype, extract_diagonal=True
895
+ )
896
+ for s in statistics_list
897
+ ]
898
+ else:
899
+ return statistics_list
900
+
901
+ def _maybe_dequantize_preconditioners(preconditioner_list):
902
+ return _maybe_dequantize_matrices_with_dtype(
903
+ preconditioner_list,
904
+ quantized_dtype_for_second_moment_preconditioner_buffers(),
905
+ )
906
+
907
+ def _maybe_dequantize_matrices_with_dtype(statistics_list, quantized_dtype):
908
+ if quantized_dtype != jnp.float32:
909
+ return [s.to_float() for s in statistics_list]
910
+ else:
911
+ return statistics_list
912
+
913
+ def _quantize_diagonal_statistics(diagonal_statistics):
914
+ return QuantizedValue.from_float_value(
915
+ diagonal_statistics, quantized_dtype_for_diagonal_statistics_buffers()
916
+ )
917
+
918
+ def _quantize_momentum(momentum_statistics):
919
+ return QuantizedValue.from_float_value(
920
+ momentum_statistics, quantized_dtype_for_momentum_buffers()
921
+ )
922
+
923
+ def sharded_init_fn(params):
924
+ """Returns optimizer state (for PJIT mode).
925
+
926
+ Args:
927
+ params: the parameters that should be updated.
928
+ """
929
+ params_flat, treedef = jax.tree_flatten(params)
930
+ # Find max size to pad to.
931
+ max_size = 0
932
+ for param in params_flat:
933
+ preconditioner = Preconditioner(
934
+ param, block_size, best_effort_shape_interpretation
935
+ )
936
+ if not _skip_preconditioning(param):
937
+ shapes = preconditioner.shapes_for_preconditioners()
938
+ sizes = [s[0] for s in shapes]
939
+ max_size = max(max(sizes), max_size)
940
+
941
+ padded_statistics = []
942
+ padded_preconditioners = []
943
+ local_stats_flat = []
944
+ exponents = []
945
+ for param in params_flat:
946
+ preconditioner = Preconditioner(
947
+ param, block_size, best_effort_shape_interpretation
948
+ )
949
+ shapes = preconditioner.shapes_for_preconditioners()
950
+ sizes = []
951
+
952
+ statistics = []
953
+ preconditioners = []
954
+ index_start = len(padded_statistics)
955
+ if not _skip_preconditioning(param):
956
+ sizes = [s[0] for s in shapes]
957
+ shapes = preconditioner.shapes_for_preconditioners()
958
+ statistics = [
959
+ matrix_epsilon * jnp.eye(max_size, dtype=jnp.float32)
960
+ for s in shapes
961
+ ]
962
+ preconditioners = [jnp.eye(max_size, dtype=jnp.float32) for s in shapes]
963
+ padded_statistics.extend(statistics)
964
+ padded_preconditioners.extend(preconditioners)
965
+ exponent = (
966
+ preconditioner.exponent_for_preconditioner()
967
+ if exponent_override == 0
968
+ else exponent_override
969
+ )
970
+ exponents.extend([exponent] * len(shapes))
971
+
972
+ diagonal_statistics = []
973
+ if _graft_type_has_diagonal_statistics():
974
+ diagonal_statistics = jnp.zeros_like(param)
975
+
976
+ diagonal_momentum = _quantize_momentum([])
977
+ momentum = _quantize_momentum(jnp.zeros_like(param))
978
+ if _graft_type_has_diagonal_momentum_states():
979
+ diagonal_momentum = _quantize_momentum((jnp.zeros_like(param)))
980
+
981
+ local_stats_flat.append(
982
+ LocalShardedParameterStats(
983
+ _quantize_diagonal_statistics(diagonal_statistics),
984
+ diagonal_momentum,
985
+ momentum,
986
+ init_training_metrics(len(sizes)),
987
+ index_start,
988
+ sizes,
989
+ )
990
+ )
991
+
992
+ local_stats = jax.tree_unflatten(treedef, local_stats_flat)
993
+ to_pad = -len(padded_statistics) % num_devices_for_pjit
994
+ if max_size == 0:
995
+ to_pad = num_devices_for_pjit
996
+ max_size = block_size
997
+ stat_dtype = jnp.float32
998
+ else:
999
+ stat_dtype = padded_statistics[0].dtype
1000
+ # Pad the statistics and preconditioner matrices to be a multiple of
1001
+ # num devices.
1002
+ # TODO(rohananil): Relax to only the size of the mesh axis where the dim
1003
+ # is split on.
1004
+ padded_statistics.extend(
1005
+ [jnp.eye(max_size, dtype=stat_dtype) for _ in range(to_pad)]
1006
+ )
1007
+ padded_preconditioners.extend(
1008
+ [jnp.eye(max_size, dtype=stat_dtype) for _ in range(to_pad)]
1009
+ )
1010
+ exponents.extend([1 for _ in range(to_pad)])
1011
+ global_stats = GlobalShardedParameterStats(
1012
+ jnp.stack(padded_statistics),
1013
+ jnp.stack(padded_preconditioners),
1014
+ jnp.stack(exponents),
1015
+ )
1016
+ return ShampooState(
1017
+ count=jnp.zeros([], jnp.int32),
1018
+ stats=ShardedShampooStats(global_stats, local_stats),
1019
+ )
1020
+
1021
+ def _max_statistics_size_from_params(params):
1022
+ max_size = 0
1023
+ for param in params:
1024
+ param_clone = jnp.zeros(param.shape, dtype=param.dtype)
1025
+ preconditioner = Preconditioner(
1026
+ param_clone, block_size, best_effort_shape_interpretation
1027
+ )
1028
+ if not _skip_preconditioning(param):
1029
+ shapes = preconditioner.shapes_for_preconditioners()
1030
+ sizes = [s[0] for s in shapes]
1031
+ max_size = max(max(sizes), max_size)
1032
+ return max_size
1033
+
1034
+ def _remove_leading_sharding_annotation(pspec):
1035
+ """Mapping from N-d to (N-1)-d, used for quantization, factoring etc."""
1036
+ # None and PSpec(None) are valid PSpecs.
1037
+ if pspec and len(pspec) > 1:
1038
+ return pjit.PartitionSpec(*pspec[1:])
1039
+ else:
1040
+ return []
1041
+
1042
+ def sharded_init_partition_spec_fn(
1043
+ params, params_partition_spec, partition_spec_for_statistics
1044
+ ):
1045
+ """Returns a parallel state tree with PartitionSpec associated with state.
1046
+
1047
+
1048
+ Args:
1049
+ params: A pytree with params.
1050
+ params_partition_spec: A pytree with PartitionSpec for params.
1051
+ partition_spec_for_statistics: PartitionSpec for the statistics.
1052
+ """
1053
+ # Parallel lists of spec, and params.
1054
+ param_pspec_flat, _ = jax.tree_flatten(
1055
+ params_partition_spec, is_leaf=lambda x: x is None
1056
+ )
1057
+ params_flat, treedef = jax.tree_flatten(params)
1058
+ assert param_pspec_flat
1059
+ assert params_flat
1060
+ # Step is replicated across cores.
1061
+ # None means cores.
1062
+ local_stats_flat = []
1063
+ num_statistics = 0
1064
+ for param, param_pspec in zip(params_flat, param_pspec_flat):
1065
+ param_clone = jnp.zeros(param.shape, dtype=param.dtype)
1066
+ preconditioner = Preconditioner(
1067
+ param_clone, block_size, best_effort_shape_interpretation
1068
+ )
1069
+ shapes = preconditioner.shapes_for_preconditioners()
1070
+ sizes = []
1071
+
1072
+ index_start = num_statistics
1073
+ if not _skip_preconditioning(param):
1074
+ sizes = [s[0] for s in shapes]
1075
+ shapes = preconditioner.shapes_for_preconditioners()
1076
+ num_statistics += len(shapes)
1077
+
1078
+ diagonal_statistics_pspec = []
1079
+ diagonal_statistics_scale_pspec = []
1080
+ if _graft_type_has_diagonal_statistics():
1081
+ # Identically shaped param.
1082
+ diagonal_statistics_pspec = param_pspec
1083
+ if quantized_dtype_for_diagonal_statistics_buffers() != jnp.float32:
1084
+ diagonal_statistics_scale_pspec = (
1085
+ _remove_leading_sharding_annotation(param_pspec)
1086
+ )
1087
+
1088
+ m1_pspec = []
1089
+ m1_scale_pspec = []
1090
+ if _graft_type_has_diagonal_momentum_states():
1091
+ m1_pspec = param_pspec
1092
+ if quantized_dtype_for_momentum_buffers() != jnp.float32:
1093
+ m1_scale_pspec = _remove_leading_sharding_annotation(m1_pspec)
1094
+
1095
+ m2_pspec = param_pspec
1096
+ m2_scale_pspec = []
1097
+ if quantized_dtype_for_momentum_buffers() != jnp.float32:
1098
+ m2_scale_pspec = _remove_leading_sharding_annotation(m2_pspec)
1099
+
1100
+ local_stats_flat.append(
1101
+ LocalShardedParameterStats(
1102
+ QuantizedValue(
1103
+ diagonal_statistics_pspec,
1104
+ [],
1105
+ diagonal_statistics_scale_pspec,
1106
+ quantized_dtype_for_diagonal_statistics_buffers(),
1107
+ False,
1108
+ list(param.shape),
1109
+ ),
1110
+ QuantizedValue(
1111
+ m1_pspec,
1112
+ [],
1113
+ m1_scale_pspec,
1114
+ quantized_dtype_for_momentum_buffers(),
1115
+ False,
1116
+ list(param.shape),
1117
+ ),
1118
+ QuantizedValue(
1119
+ m2_pspec,
1120
+ [],
1121
+ m2_scale_pspec,
1122
+ quantized_dtype_for_momentum_buffers(),
1123
+ False,
1124
+ list(param.shape),
1125
+ ),
1126
+ init_training_metrics_pspec(),
1127
+ index_start,
1128
+ sizes,
1129
+ )
1130
+ )
1131
+
1132
+ local_stats = jax.tree_unflatten(treedef, local_stats_flat)
1133
+ global_stats = GlobalShardedParameterStats(
1134
+ partition_spec_for_statistics,
1135
+ partition_spec_for_statistics,
1136
+ pjit.PartitionSpec(),
1137
+ )
1138
+ count_pspec = pjit.PartitionSpec()
1139
+ return ShampooState(
1140
+ count=count_pspec, stats=ShardedShampooStats(global_stats, local_stats)
1141
+ )
1142
+
1143
+ def sharded_init_shape_and_dtype_fn(params):
1144
+ """Returns a parallel state tree with shape, dtype associated with state.
1145
+
1146
+
1147
+ Args:
1148
+ params: A pytree with params.
1149
+ """
1150
+ # Parallel lists of spec, and params.
1151
+ params_flat, treedef = jax.tree_flatten(params)
1152
+ assert params_flat
1153
+ # Step is replicated across cores.
1154
+ # None means cores.
1155
+ local_stats_flat = []
1156
+ num_statistics = 0
1157
+ for param in params_flat:
1158
+ param_clone = jnp.zeros(param.shape, dtype=param.dtype)
1159
+ preconditioner = Preconditioner(
1160
+ param_clone, block_size, best_effort_shape_interpretation
1161
+ )
1162
+ shapes = preconditioner.shapes_for_preconditioners()
1163
+ sizes = []
1164
+
1165
+ index_start = num_statistics
1166
+ if not _skip_preconditioning(param):
1167
+ sizes = [s[0] for s in shapes]
1168
+ shapes = preconditioner.shapes_for_preconditioners()
1169
+ num_statistics += len(shapes)
1170
+
1171
+ diagonal_statistics_shape_and_dtype = []
1172
+ diagonal_statistics_scale_shape_and_dtype = []
1173
+ if _graft_type_has_diagonal_statistics():
1174
+ diagonal_statistics_shape_and_dtype = [list(param.shape), param.dtype]
1175
+ qdtype = quantized_dtype_for_diagonal_statistics_buffers()
1176
+ if qdtype != jnp.float32:
1177
+ diagonal_statistics_shape_and_dtype = [list(param.shape), qdtype]
1178
+ diagonal_statistics_scale_shape_and_dtype = [
1179
+ list(param.shape)[1:],
1180
+ param.dtype,
1181
+ ]
1182
+
1183
+ qdtype = quantized_dtype_for_momentum_buffers()
1184
+ m1_shape_and_dtype = []
1185
+ m1_scale_shape_and_dtype = []
1186
+ if _graft_type_has_diagonal_momentum_states():
1187
+ m1_shape_and_dtype = [list(param.shape), qdtype]
1188
+ if quantized_dtype_for_momentum_buffers() != jnp.float32:
1189
+ m1_scale_shape_and_dtype = [list(param.shape)[1:], qdtype]
1190
+
1191
+ m2_shape_and_dtype = [list(param.shape), param.dtype]
1192
+ m2_scale_shape_and_dtype = []
1193
+ if qdtype != jnp.float32:
1194
+ m2_shape_and_dtype = [list(param.shape), qdtype]
1195
+ m2_scale_shape_and_dtype = [list(param.shape)[1:], qdtype]
1196
+
1197
+ local_stats_flat.append(
1198
+ LocalShardedParameterStats(
1199
+ QuantizedValue(
1200
+ diagonal_statistics_shape_and_dtype,
1201
+ [],
1202
+ diagonal_statistics_scale_shape_and_dtype,
1203
+ quantized_dtype_for_diagonal_statistics_buffers(),
1204
+ False,
1205
+ list(param.shape),
1206
+ ),
1207
+ QuantizedValue(
1208
+ m1_shape_and_dtype,
1209
+ [],
1210
+ m1_scale_shape_and_dtype,
1211
+ quantized_dtype_for_momentum_buffers(),
1212
+ False,
1213
+ list(param.shape),
1214
+ ),
1215
+ QuantizedValue(
1216
+ m2_shape_and_dtype,
1217
+ [],
1218
+ m2_scale_shape_and_dtype,
1219
+ quantized_dtype_for_momentum_buffers(),
1220
+ False,
1221
+ list(param.shape),
1222
+ ),
1223
+ init_training_metrics_shapes(len(sizes)),
1224
+ index_start,
1225
+ sizes,
1226
+ )
1227
+ )
1228
+
1229
+ local_stats = jax.tree_unflatten(treedef, local_stats_flat)
1230
+ max_statistics_size = _max_statistics_size_from_params(params_flat)
1231
+ to_pad = -num_statistics % num_devices_for_pjit
1232
+ num_statistics += to_pad
1233
+ if num_statistics == 0:
1234
+ num_statistics = num_devices_for_pjit
1235
+ max_statistics_size = block_size
1236
+ statistics_shape = [num_statistics, max_statistics_size, max_statistics_size]
1237
+ global_stats = GlobalShardedParameterStats(
1238
+ [statistics_shape, jnp.float32],
1239
+ [statistics_shape, jnp.float32],
1240
+ [[num_statistics], jnp.int32],
1241
+ )
1242
+ return ShampooState(
1243
+ count=[[], jnp.float32],
1244
+ stats=ShardedShampooStats(global_stats, local_stats),
1245
+ )
1246
+
1247
+ def sharded_update_fn(grads, state, params):
1248
+ """Transform the input gradient and update all statistics in sharded mode.
1249
+
1250
+ Args:
1251
+ grads: the gradient tensors for the parameters.
1252
+ state: a named tuple containing the state of the optimizer
1253
+ params: the parameters that should be updated.
1254
+
1255
+ Returns:
1256
+ A tuple containing the new parameters and the new optimizer state.
1257
+ """
1258
+ params_flat, treedef = jax.tree_flatten(params)
1259
+ grads_flat = treedef.flatten_up_to(grads)
1260
+
1261
+ global_stats = state.stats.global_stats
1262
+ local_stats_flat = treedef.flatten_up_to(state.stats.local_stats)
1263
+ stats_flat = [
1264
+ _convert_to_parameter_stats(global_stats, local_stat)
1265
+ for local_stat in local_stats_flat
1266
+ ]
1267
+ new_stats_flat = jax.tree_multimap(
1268
+ lambda g, s, p: _compute_stats(g, s, p, state.count),
1269
+ grads_flat,
1270
+ stats_flat,
1271
+ params_flat,
1272
+ )
1273
+
1274
+ outputs = jax.tree_multimap(
1275
+ lambda g, s, p: _transform_grad(g, s, p, state.count),
1276
+ grads_flat,
1277
+ new_stats_flat,
1278
+ params_flat,
1279
+ )
1280
+ updates_flat, new_stats_flat = list(zip(*outputs)) if outputs else ((), ())
1281
+
1282
+ updates = jax.tree_unflatten(treedef, updates_flat)
1283
+ # Create new local_stats
1284
+ new_local_stats_flat = [
1285
+ _convert_from_parameter_stats(new_stat, local_stat)
1286
+ for new_stat, local_stat in zip(new_stats_flat, local_stats_flat)
1287
+ ]
1288
+
1289
+ max_size = global_stats.statistics.shape[1]
1290
+ new_padded_statistics = []
1291
+ for stat in new_stats_flat:
1292
+ new_padded_statistics.extend(
1293
+ [pad_square_matrix(stat, max_size) for stat in stat.statistics]
1294
+ )
1295
+
1296
+ # Create global stats
1297
+ # TODO(rohananil): Preconditioner is not updated every step, so cost of
1298
+ # stack/pad can be obviated away.
1299
+ # Pad the statistics and preconditioner matrices to be a multiple of
1300
+ # num devices.
1301
+ # TODO(rohananil): Relax to only the size of the mesh axis where the dim
1302
+ # is split on.
1303
+ to_pad = -len(new_padded_statistics) % num_devices_for_pjit
1304
+ new_padded_statistics.extend(
1305
+ [
1306
+ jnp.eye(max_size, dtype=new_padded_statistics[0].dtype)
1307
+ for _ in range(to_pad)
1308
+ ]
1309
+ )
1310
+ new_stacked_padded_statistics = jnp.stack(new_padded_statistics)
1311
+ new_stacked_padded_statistics = pjit.with_sharding_constraint(
1312
+ new_stacked_padded_statistics, statistics_partition_spec
1313
+ )
1314
+
1315
+ def _internal_inverse_pth_root_all():
1316
+ preconditioners, errors = _matrix_inverse_pth_root_pjit(
1317
+ new_stacked_padded_statistics,
1318
+ global_stats.exponents,
1319
+ statistics_partition_spec,
1320
+ )
1321
+ return preconditioners, errors
1322
+
1323
+ if preconditioning_compute_steps == 1:
1324
+ new_preconditioners, errors = _internal_inverse_pth_root_all()
1325
+ else:
1326
+ # Passing statistics instead of preconditioners as they are similarly
1327
+ # shaped tensors. Note statistics will be ignored as we are passing in
1328
+ # a large init value for error.
1329
+ preconditioners_init = new_stacked_padded_statistics
1330
+ n = new_stacked_padded_statistics.shape[0]
1331
+ errors_init = jnp.ones([n], jnp.float32) * inverse_failure_threshold
1332
+ init_state = [preconditioners_init, errors_init]
1333
+ perform_step = state.count % preconditioning_compute_steps == 0
1334
+ new_preconditioners, errors = efficient_cond(
1335
+ perform_step, _internal_inverse_pth_root_all, init_state
1336
+ )
1337
+
1338
+ new_local_stats_flat = _add_error_into_local_stats(
1339
+ new_local_stats_flat, errors, inverse_failure_threshold
1340
+ )
1341
+ new_local_stats = jax.tree_unflatten(treedef, new_local_stats_flat)
1342
+ errors = errors.reshape((-1, 1, 1))
1343
+ predicate = jnp.logical_or(
1344
+ jnp.isnan(errors), errors >= inverse_failure_threshold
1345
+ ).astype(new_preconditioners.dtype)
1346
+ # TODO(rohananil): Check for numerical instabilities.
1347
+ new_conditional_preconditioners = (
1348
+ predicate * global_stats.preconditioners
1349
+ + (1.0 - predicate) * new_preconditioners
1350
+ )
1351
+ new_global_stats = GlobalShardedParameterStats(
1352
+ new_stacked_padded_statistics,
1353
+ new_conditional_preconditioners,
1354
+ global_stats.exponents,
1355
+ )
1356
+ new_shampoo_state = ShampooState(
1357
+ count=state.count + 1,
1358
+ stats=ShardedShampooStats(new_global_stats, new_local_stats),
1359
+ )
1360
+ return updates, new_shampoo_state
1361
+
1362
+ def init_fn(params):
1363
+ """Initialise the optimiser's state."""
1364
+
1365
+ def _init(param):
1366
+ preconditioner = Preconditioner(
1367
+ param, block_size, best_effort_shape_interpretation
1368
+ )
1369
+ statistics = []
1370
+ preconditioners = []
1371
+ if not _skip_preconditioning(param):
1372
+ shapes = preconditioner.shapes_for_preconditioners()
1373
+ statistics = [
1374
+ matrix_epsilon * jnp.eye(s[0], dtype=jnp.float32) for s in shapes
1375
+ ]
1376
+ preconditioners = [jnp.eye(s[0], dtype=jnp.float32) for s in shapes]
1377
+
1378
+ diagonal_statistics = []
1379
+ if _graft_type_has_diagonal_statistics():
1380
+ diagonal_statistics = jnp.zeros_like(param)
1381
+
1382
+ diagonal_momentum = _quantize_momentum([])
1383
+ momentum = _quantize_momentum(jnp.zeros_like(param))
1384
+ if _graft_type_has_diagonal_momentum_states():
1385
+ diagonal_momentum = _quantize_momentum(jnp.zeros_like(param))
1386
+
1387
+ return ParameterStats(
1388
+ _quantize_diagonal_statistics(diagonal_statistics),
1389
+ _maybe_quantize_statistics(statistics),
1390
+ _maybe_quantize_preconditioners(preconditioners),
1391
+ diagonal_momentum,
1392
+ momentum,
1393
+ init_training_metrics(len(statistics)),
1394
+ )
1395
+
1396
+ return ShampooState(
1397
+ count=jnp.zeros([], jnp.int32), stats=jax.tree_map(_init, params)
1398
+ )
1399
+
1400
+ def _skip_preconditioning(param):
1401
+ return len(param.shape) < 1 or any(
1402
+ [s > skip_preconditioning_dim_size_gt for s in param.shape]
1403
+ )
1404
+
1405
+ def _compute_stats(grad, state, param, step):
1406
+ """Compute per-parameter statistics."""
1407
+ preconditioner = Preconditioner(
1408
+ param, block_size, best_effort_shape_interpretation
1409
+ )
1410
+ new_statistics = [[]] * len(state.statistics)
1411
+ w1 = beta2
1412
+ w2 = beta2 if beta2 == 1.0 else (1.0 - beta2)
1413
+ if not _skip_preconditioning(param):
1414
+
1415
+ def compute_updated_statistics():
1416
+ new_stats = preconditioner.statistics_from_grad(grad)
1417
+ new_stats_accumulators = []
1418
+ for stat, stat_accumulator in zip(new_stats, state.statistics):
1419
+ new_stats_accumulators.append(
1420
+ w1 * _to_float(stat_accumulator) + w2 * stat
1421
+ )
1422
+ return _maybe_quantize_statistics(new_stats_accumulators)
1423
+
1424
+ if statistics_compute_steps > 1:
1425
+ perform_step = step % statistics_compute_steps == 0
1426
+ init_state = state.statistics
1427
+ new_statistics = list(
1428
+ efficient_cond(perform_step, compute_updated_statistics, init_state)
1429
+ )
1430
+ else:
1431
+ new_statistics = compute_updated_statistics()
1432
+ return ParameterStats(
1433
+ state.diagonal_statistics,
1434
+ new_statistics,
1435
+ state.preconditioners,
1436
+ state.diagonal_momentum,
1437
+ state.momentum,
1438
+ state.training_metrics,
1439
+ )
1440
+
1441
+ def _matrix_inverse_pth_root_vmap(xs, ps):
1442
+ mi_pth_root = functools.partial(
1443
+ matrix_inverse_pth_root, ridge_epsilon=matrix_epsilon, precision=precision
1444
+ )
1445
+ return jax.vmap(mi_pth_root)(xs, ps)
1446
+
1447
+ def _quantized_matrix_inverse_pth_root_vmap(qxs, qds, qbs, ps):
1448
+ def _quantized_to_float(qx, qd, qb):
1449
+ qv = QuantizedValue(qx, qd, qb, qx.dtype, True, list(qx.shape))
1450
+ return qv.to_float()
1451
+
1452
+ def matrix_inverse_pth_root_wrapper(qx, qd, qb, p):
1453
+ v = _quantized_to_float(qx, qd, qb)
1454
+ preconditioner, error = matrix_inverse_pth_root(
1455
+ v, p, ridge_epsilon=matrix_epsilon, precision=precision
1456
+ )
1457
+ qp = QuantizedValue.from_float_value(preconditioner, qx.dtype, True)
1458
+ return qp.quantized, qp.diagonal, qp.bucket_size, error
1459
+
1460
+ return jax.vmap(matrix_inverse_pth_root_wrapper)(qxs, qds, qbs, ps)
1461
+
1462
+ def _matrix_inverse_pth_root_pjit(xs, ps, statistics_partition_spec=None):
1463
+ # Partition the concatenated statistics matrix across all cores.
1464
+ pspec_for_partition = preconditioner_partition_spec
1465
+ partitioned_xs = pjit.with_sharding_constraint(xs, pspec_for_partition)
1466
+ partitioned_ps = pjit.with_sharding_constraint(
1467
+ ps, pjit.PartitionSpec(preconditioner_partition_spec[0])
1468
+ )
1469
+ # Run matrix inverse pth root on each shard.
1470
+ partitioned_preconditioners, partitioned_errors = _matrix_inverse_pth_root_vmap(
1471
+ partitioned_xs, partitioned_ps
1472
+ )
1473
+ # Reshard output to have the same PSpec as input. This is required to avoid
1474
+ # vmap seeing the full set of statistics.
1475
+ partitioned_preconditioners = pjit.with_sharding_constraint(
1476
+ partitioned_preconditioners, pspec_for_partition
1477
+ )
1478
+ # Recombine the outputs at each core.
1479
+ preconditioners = pjit.with_sharding_constraint(
1480
+ partitioned_preconditioners, statistics_partition_spec
1481
+ )
1482
+ errors = pjit.with_sharding_constraint(partitioned_errors, pjit.PartitionSpec())
1483
+ return preconditioners, errors
1484
+
1485
+ def _pmap_compute_preconditioners(
1486
+ states,
1487
+ step,
1488
+ statistics,
1489
+ num_statistics_per_state,
1490
+ original_shapes,
1491
+ exponents,
1492
+ max_size,
1493
+ prev_preconditioners,
1494
+ ):
1495
+ """Computes preconditioners for given statistics in states in PMAP mode.
1496
+
1497
+ Args:
1498
+ states: A list of optimizer states.
1499
+ step: Current step number
1500
+ statistics: A list of statistics for all variables (for every dim)
1501
+ num_statistics_per_state: Number of statistis per state to reconstruct
1502
+ output states.
1503
+ original_shapes: A list of shapes of the statistics.
1504
+ exponents: Exponent power to use for inverse-pth roots.
1505
+ max_size: Maximum dim of the statistics to pad.
1506
+ prev_preconditioners: Previously available preconditioner.
1507
+
1508
+ Returns:
1509
+ New optimizer states after computing the preconditioner.
1510
+ """
1511
+ num_devices = lax.psum(1, batch_axis_name)
1512
+ num_statistics = len(statistics)
1513
+ # Pad statistics and exponents to next multiple of num_devices.
1514
+ packed_statistics = [pad_square_matrix(stat, max_size) for stat in statistics]
1515
+ to_pad = -num_statistics % num_devices
1516
+ packed_statistics.extend(
1517
+ [jnp.eye(max_size, dtype=packed_statistics[0].dtype) for _ in range(to_pad)]
1518
+ )
1519
+ exponents.extend([1 for _ in range(to_pad)])
1520
+
1521
+ if not packed_statistics:
1522
+ return states
1523
+
1524
+ all_statistics = batch(packed_statistics, num_devices)
1525
+ all_exponents = batch(exponents, num_devices)
1526
+
1527
+ def _internal_inverse_pth_root_all():
1528
+ current_replica = lax.axis_index(batch_axis_name)
1529
+ preconditioners, errors = _matrix_inverse_pth_root_vmap(
1530
+ all_statistics[current_replica], all_exponents[current_replica]
1531
+ )
1532
+ preconditioners = jax.lax.all_gather(preconditioners, batch_axis_name)
1533
+ errors = jax.lax.all_gather(errors, batch_axis_name)
1534
+ preconditioners_flat = unbatch(preconditioners)
1535
+ errors_flat = unbatch(errors)
1536
+ return preconditioners_flat, errors_flat
1537
+
1538
+ if preconditioning_compute_steps == 1:
1539
+ preconditioners_flat, errors_flat = _internal_inverse_pth_root_all()
1540
+ else:
1541
+ # Passing statistics instead of preconditioners as they are similarly
1542
+ # shaped tensors. Note statistics will be ignored as we are passing in
1543
+ # a large init value for error.
1544
+ preconditioners_init = packed_statistics
1545
+ errors_init = [inverse_failure_threshold] * len(packed_statistics)
1546
+ init_state = [preconditioners_init, errors_init]
1547
+ perform_step = step % preconditioning_compute_steps == 0
1548
+ preconditioners_flat, errors_flat = efficient_cond(
1549
+ perform_step, _internal_inverse_pth_root_all, init_state
1550
+ )
1551
+
1552
+ def _skip(error):
1553
+ condition = jnp.logical_or(
1554
+ jnp.isnan(error), error >= inverse_failure_threshold
1555
+ )
1556
+ return condition.astype(error.dtype)
1557
+
1558
+ def _select_preconditioner(error, new_p, old_p):
1559
+ return lax.cond(
1560
+ _skip(error), lambda _: old_p, lambda _: new_p, operand=None
1561
+ )
1562
+
1563
+ new_preconditioners_flat = []
1564
+ new_errors_flat = []
1565
+ for p, shape, prev_p, error in zip(
1566
+ preconditioners_flat, original_shapes, prev_preconditioners, errors_flat
1567
+ ):
1568
+ new_preconditioners_flat.append(
1569
+ _select_preconditioner(error, p[: shape[0], : shape[1]], prev_p)
1570
+ )
1571
+ new_errors_flat.append(error)
1572
+
1573
+ assert len(states) == len(num_statistics_per_state)
1574
+ assert len(new_preconditioners_flat) == num_statistics
1575
+ assert len(new_errors_flat) == num_statistics
1576
+
1577
+ # Add back empty preconditioners so we that we can set the optimizer state.
1578
+ preconditioners_for_states = []
1579
+ idx = 0
1580
+ errors_for_states = []
1581
+ for num_statistics, state in zip(num_statistics_per_state, states):
1582
+ if num_statistics == 0:
1583
+ preconditioners_for_states.append([])
1584
+ errors_for_states.append([])
1585
+ else:
1586
+ preconditioners_for_state = new_preconditioners_flat[
1587
+ idx : idx + num_statistics
1588
+ ]
1589
+ assert len(state.statistics) == len(preconditioners_for_state)
1590
+ preconditioners_for_states.append(preconditioners_for_state)
1591
+
1592
+ errors_for_state = jnp.stack(
1593
+ new_errors_flat[idx : idx + num_statistics]
1594
+ )
1595
+ assert len(state.statistics) == len(errors_for_state)
1596
+ errors_for_states.append(errors_for_state)
1597
+
1598
+ idx += num_statistics
1599
+ new_states = []
1600
+ for state, new_preconditioners, new_errors in zip(
1601
+ states, preconditioners_for_states, errors_for_states
1602
+ ):
1603
+ if state.statistics:
1604
+ new_errors = jnp.where(
1605
+ jnp.logical_and(
1606
+ new_errors > 0.0, new_errors != inverse_failure_threshold
1607
+ ),
1608
+ new_errors,
1609
+ state.training_metrics.inverse_pth_root_errors,
1610
+ )
1611
+ new_training_metrics = TrainingMetrics(new_errors)
1612
+ new_states.append(
1613
+ ParameterStats(
1614
+ state.diagonal_statistics,
1615
+ state.statistics,
1616
+ new_preconditioners,
1617
+ state.diagonal_momentum,
1618
+ state.momentum,
1619
+ new_training_metrics,
1620
+ )
1621
+ )
1622
+
1623
+ return new_states
1624
+
1625
+ def _pmap_quantized_compute_preconditioners(
1626
+ states,
1627
+ step,
1628
+ statistics,
1629
+ num_statistics_per_state,
1630
+ original_shapes,
1631
+ exponents,
1632
+ max_size,
1633
+ prev_preconditioners,
1634
+ ):
1635
+ """Computes preconditioners for given statistics in states in PMAP mode.
1636
+
1637
+ For quantization, each statistic is represented by three values:
1638
+ quantized matrix, diagonal, and bucket sizes, we run inverse pth-roots
1639
+ without ever recreating the original matrix in f32.
1640
+
1641
+ Args:
1642
+ states: A list of optimizer states.
1643
+ step: Current step number
1644
+ statistics: A list of statistics for all variables (for every dim)
1645
+ num_statistics_per_state: Number of statistis per state to reconstruct
1646
+ output states.
1647
+ original_shapes: A list of shapes of the statistics.
1648
+ exponents: Exponent power to use for inverse-pth roots.
1649
+ max_size: Maximum dim of the statistics to pad.
1650
+ prev_preconditioners: Previously available preconditioner.
1651
+
1652
+ Returns:
1653
+ New optimizer states after computing the preconditioner.
1654
+ """
1655
+ num_devices = lax.psum(1, batch_axis_name)
1656
+ num_statistics = len(statistics)
1657
+ quantized_dtype = quantized_dtype_for_second_moment_statistics_buffers()
1658
+ # Complexity here is around: shapes needing be statically shaped,
1659
+ # our custom quantization type requires a different type of packing.
1660
+
1661
+ # Parallel tensors:
1662
+ # quantized [dxd]
1663
+ # diagonals [d] f32
1664
+ # bucket_sizes [d] f32
1665
+ packed_quantized_statistics = [
1666
+ pad_square_matrix(stat.quantized, max_size) for stat in statistics
1667
+ ]
1668
+ packed_quantized_diagonals = [
1669
+ pad_vector(stat.diagonal, max_size) for stat in statistics
1670
+ ]
1671
+ packed_quantized_bucket_sizes = [
1672
+ pad_vector(stat.bucket_size, max_size) for stat in statistics
1673
+ ]
1674
+
1675
+ to_pad = -num_statistics % num_devices
1676
+ padded_eye = jnp.eye(max_size, dtype=jnp.float32)
1677
+ quantized_eye = QuantizedValue.from_float_value(
1678
+ padded_eye, quantized_dtype, True
1679
+ )
1680
+ packed_quantized_statistics.extend(
1681
+ [quantized_eye.quantized for _ in range(to_pad)]
1682
+ )
1683
+ packed_quantized_diagonals.extend(
1684
+ [quantized_eye.diagonal for _ in range(to_pad)]
1685
+ )
1686
+ packed_quantized_bucket_sizes.extend(
1687
+ [quantized_eye.bucket_size for _ in range(to_pad)]
1688
+ )
1689
+ exponents.extend([1 for _ in range(to_pad)])
1690
+
1691
+ if not packed_quantized_statistics:
1692
+ return states
1693
+
1694
+ all_quantized_statistics = batch(packed_quantized_statistics, num_devices)
1695
+ all_quantized_diagonals = batch(packed_quantized_diagonals, num_devices)
1696
+ all_quantized_bucket_sizes = batch(packed_quantized_bucket_sizes, num_devices)
1697
+ all_exponents = batch(exponents, num_devices)
1698
+
1699
+ def _internal_inverse_pth_root_all():
1700
+ current_replica = lax.axis_index(batch_axis_name)
1701
+ (
1702
+ quantized_preconditioners,
1703
+ quantized_diagonals,
1704
+ quantized_bucket_sizes,
1705
+ errors,
1706
+ ) = _quantized_matrix_inverse_pth_root_vmap(
1707
+ all_quantized_statistics[current_replica],
1708
+ all_quantized_diagonals[current_replica],
1709
+ all_quantized_bucket_sizes[current_replica],
1710
+ all_exponents[current_replica],
1711
+ )
1712
+ quantized_preconditioners = jax.lax.all_gather(
1713
+ quantized_preconditioners, batch_axis_name
1714
+ )
1715
+ quantized_diagonals = jax.lax.all_gather(
1716
+ quantized_diagonals, batch_axis_name
1717
+ )
1718
+ quantized_bucket_sizes = jax.lax.all_gather(
1719
+ quantized_bucket_sizes, batch_axis_name
1720
+ )
1721
+ errors = jax.lax.all_gather(errors, batch_axis_name)
1722
+ quantized_preconditioners_flat = unbatch(quantized_preconditioners)
1723
+ quantized_diagonals_flat = unbatch(quantized_diagonals)
1724
+ quantized_bucket_sizes_flat = unbatch(quantized_bucket_sizes)
1725
+ errors_flat = unbatch(errors)
1726
+ return (
1727
+ quantized_preconditioners_flat,
1728
+ quantized_diagonals_flat,
1729
+ quantized_bucket_sizes_flat,
1730
+ errors_flat,
1731
+ )
1732
+
1733
+ if preconditioning_compute_steps == 1:
1734
+ (
1735
+ quantized_preconditioners_flat,
1736
+ quantized_diagonals_flat,
1737
+ quantized_bucket_sizes_flat,
1738
+ errors_flat,
1739
+ ) = _internal_inverse_pth_root_all()
1740
+ else:
1741
+ # Passing statistics instead of preconditioners as they are similarly
1742
+ # shaped tensors. Note statistics will be ignored as we are passing in
1743
+ # a large init value for error.
1744
+ quantized_preconditioners_init = packed_quantized_statistics
1745
+ quantized_diagonals_init = packed_quantized_diagonals
1746
+ quantized_bucket_sizes_init = packed_quantized_bucket_sizes
1747
+ errors_init = [inverse_failure_threshold] * len(
1748
+ quantized_preconditioners_init
1749
+ )
1750
+ init_state = [
1751
+ quantized_preconditioners_init,
1752
+ quantized_diagonals_init,
1753
+ quantized_bucket_sizes_init,
1754
+ errors_init,
1755
+ ]
1756
+ perform_step = step % preconditioning_compute_steps == 0
1757
+ (
1758
+ quantized_preconditioners_flat,
1759
+ quantized_diagonals_flat,
1760
+ quantized_bucket_sizes_flat,
1761
+ errors_flat,
1762
+ ) = efficient_cond(perform_step, _internal_inverse_pth_root_all, init_state)
1763
+
1764
+ def _skip(error):
1765
+ condition = jnp.logical_or(
1766
+ jnp.isnan(error), error >= inverse_failure_threshold
1767
+ )
1768
+ return condition.astype(error.dtype)
1769
+
1770
+ def _select_preconditioner(error, new_p, old_p):
1771
+ return lax.cond(
1772
+ _skip(error), lambda _: old_p, lambda _: new_p, operand=None
1773
+ )
1774
+
1775
+ new_quantized_preconditioners_flat = []
1776
+ new_quantized_diagonals_flat = []
1777
+ new_quantized_bucket_sizes_flat = []
1778
+ new_errors_flat = []
1779
+ for p, d, b, shape, prev_p, error in zip(
1780
+ quantized_preconditioners_flat,
1781
+ quantized_diagonals_flat,
1782
+ quantized_bucket_sizes_flat,
1783
+ original_shapes,
1784
+ prev_preconditioners,
1785
+ errors_flat,
1786
+ ):
1787
+ new_quantized_preconditioners_flat.append(
1788
+ _select_preconditioner(
1789
+ error, p[: shape[0], : shape[1]], prev_p.quantized
1790
+ )
1791
+ )
1792
+ new_quantized_diagonals_flat.append(
1793
+ _select_preconditioner(error, d[: shape[0]], prev_p.diagonal)
1794
+ )
1795
+ new_quantized_bucket_sizes_flat.append(
1796
+ _select_preconditioner(error, b[: shape[0]], prev_p.bucket_size)
1797
+ )
1798
+ new_errors_flat.append(error)
1799
+
1800
+ assert len(states) == len(num_statistics_per_state)
1801
+ assert len(new_quantized_preconditioners_flat) == num_statistics
1802
+ assert len(new_quantized_diagonals_flat) == num_statistics
1803
+ assert len(new_quantized_bucket_sizes_flat) == num_statistics
1804
+
1805
+ # Add back empty preconditioners so we that we can set the optimizer state.
1806
+ preconditioners_for_states = []
1807
+ errors_for_states = []
1808
+ idx = 0
1809
+ for num_statistics, state in zip(num_statistics_per_state, states):
1810
+ if num_statistics == 0:
1811
+ preconditioners_for_states.append([])
1812
+ errors_for_states.append([])
1813
+ else:
1814
+ quantized_preconditioners_for_state = (
1815
+ new_quantized_preconditioners_flat[idx : idx + num_statistics]
1816
+ )
1817
+ quantized_diagonals_for_state = new_quantized_diagonals_flat[
1818
+ idx : idx + num_statistics
1819
+ ]
1820
+ quantized_bucket_sizes_for_state = new_quantized_bucket_sizes_flat[
1821
+ idx : idx + num_statistics
1822
+ ]
1823
+ errors_for_state = jnp.stack(
1824
+ new_errors_flat[idx : idx + num_statistics]
1825
+ )
1826
+
1827
+ assert len(state.statistics) == len(quantized_preconditioners_for_state)
1828
+ assert len(state.statistics) == len(quantized_diagonals_for_state)
1829
+ assert len(state.statistics) == len(quantized_bucket_sizes_for_state)
1830
+ assert len(state.statistics) == len(errors_for_state)
1831
+
1832
+ quantized_preconditioners = []
1833
+ for qv, qd, qb in zip(
1834
+ quantized_preconditioners_for_state,
1835
+ quantized_diagonals_for_state,
1836
+ quantized_bucket_sizes_for_state,
1837
+ ):
1838
+ quantized_preconditioners.append(
1839
+ QuantizedValue(qv, qd, qb, qv.dtype, True, list(qv.shape))
1840
+ )
1841
+ preconditioners_for_states.append(quantized_preconditioners)
1842
+ errors_for_states.append(errors_for_state)
1843
+ idx += num_statistics
1844
+ new_states = []
1845
+ for state, new_preconditioners, new_errors in zip(
1846
+ states, preconditioners_for_states, errors_for_states
1847
+ ):
1848
+ if state.statistics:
1849
+ new_errors = jnp.where(
1850
+ jnp.logical_and(
1851
+ new_errors > 0.0, new_errors != inverse_failure_threshold
1852
+ ),
1853
+ new_errors,
1854
+ state.training_metrics.inverse_pth_root_errors,
1855
+ )
1856
+ new_training_metrics = TrainingMetrics(new_errors)
1857
+ new_states.append(
1858
+ ParameterStats(
1859
+ state.diagonal_statistics,
1860
+ state.statistics,
1861
+ new_preconditioners,
1862
+ state.diagonal_momentum,
1863
+ state.momentum,
1864
+ new_training_metrics,
1865
+ )
1866
+ )
1867
+
1868
+ return new_states
1869
+
1870
+ def _pjit_compute_preconditioners(
1871
+ states,
1872
+ step,
1873
+ statistics,
1874
+ num_statistics_per_state,
1875
+ original_shapes,
1876
+ exponents,
1877
+ max_size,
1878
+ prev_preconditioners,
1879
+ ):
1880
+ """Computes preconditioners for given statistics in states in PJIT mode.
1881
+
1882
+ Args:
1883
+ states: A list of optimizer states.
1884
+ step: Current step number
1885
+ statistics: A list of statistics for all variables (for every dim)
1886
+ num_statistics_per_state: Number of statistis per state to reconstruct
1887
+ output states.
1888
+ original_shapes: A list of shapes of the statistics.
1889
+ exponents: Exponent power to use for inverse-pth roots.
1890
+ max_size: Maximum dim of the statistics to pad.
1891
+ prev_preconditioners: Previously available preconditioner.
1892
+
1893
+ Returns:
1894
+ New optimizer states after computing the preconditioner.
1895
+ """
1896
+ num_statistics = len(statistics)
1897
+ to_pad = -num_statistics % num_devices_for_pjit
1898
+ padded_statistics = [pad_square_matrix(stat, max_size) for stat in statistics]
1899
+ padded_statistics.extend(
1900
+ [jnp.eye(max_size, dtype=padded_statistics[0].dtype) for _ in range(to_pad)]
1901
+ )
1902
+ exponents.extend([1 for _ in range(to_pad)])
1903
+ all_statistics = jnp.stack(padded_statistics)
1904
+ all_exponents = jnp.stack(exponents)
1905
+
1906
+ def _internal_inverse_pth_root_all():
1907
+ preconditioners, errors = _matrix_inverse_pth_root_pjit(
1908
+ all_statistics, all_exponents
1909
+ )
1910
+ b1 = preconditioners.shape[0]
1911
+
1912
+ def split(batched_values):
1913
+ return [
1914
+ jnp.squeeze(v)
1915
+ for v in jnp.split(batched_values, indices_or_sections=b1, axis=0)
1916
+ ]
1917
+
1918
+ return split(preconditioners), split(errors)
1919
+
1920
+ if preconditioning_compute_steps == 1:
1921
+ preconditioners_flat, errors_flat = _internal_inverse_pth_root_all()
1922
+ else:
1923
+ # Passing statistics instead of preconditioners as they are similarly
1924
+ # shaped tensors. Note statistics will be ignored as we are passing in
1925
+ # a large init value for error.
1926
+ preconditioners_init = padded_statistics
1927
+ errors_init = [inverse_failure_threshold] * len(padded_statistics)
1928
+ init_state = [preconditioners_init, errors_init]
1929
+ perform_step = step % preconditioning_compute_steps == 0
1930
+ preconditioners_flat, errors_flat = efficient_cond(
1931
+ perform_step, _internal_inverse_pth_root_all, init_state
1932
+ )
1933
+
1934
+ def _skip(error):
1935
+ condition = jnp.logical_or(
1936
+ jnp.isnan(error), error >= inverse_failure_threshold
1937
+ )
1938
+ return condition.astype(error.dtype)
1939
+
1940
+ def _select_preconditioner(error, new_p, old_p):
1941
+ return lax.cond(
1942
+ _skip(error), lambda _: old_p, lambda _: new_p, operand=None
1943
+ )
1944
+
1945
+ new_preconditioners_flat = []
1946
+ new_errors_flat = []
1947
+ for p, shape, prev_p, error in zip(
1948
+ preconditioners_flat, original_shapes, prev_preconditioners, errors_flat
1949
+ ):
1950
+ new_preconditioners_flat.append(
1951
+ _select_preconditioner(error, p[: shape[0], : shape[1]], prev_p)
1952
+ )
1953
+ new_errors_flat.append(error)
1954
+
1955
+ assert len(states) == len(num_statistics_per_state)
1956
+ assert len(new_preconditioners_flat) == num_statistics
1957
+
1958
+ # Add back empty preconditioners so we that we can set the optimizer state.
1959
+ preconditioners_for_states = []
1960
+ errors_for_states = []
1961
+ idx = 0
1962
+ for num_statistics, state in zip(num_statistics_per_state, states):
1963
+ if num_statistics == 0:
1964
+ preconditioners_for_states.append([])
1965
+ errors_for_states.append([])
1966
+ else:
1967
+ preconditioners_for_state = new_preconditioners_flat[
1968
+ idx : idx + num_statistics
1969
+ ]
1970
+ assert len(state.statistics) == len(preconditioners_for_state)
1971
+ preconditioners_for_states.append(preconditioners_for_state)
1972
+
1973
+ errors_for_state = jnp.stack(
1974
+ new_errors_flat[idx : idx + num_statistics]
1975
+ )
1976
+ assert len(state.statistics) == len(errors_for_state)
1977
+ errors_for_states.append(errors_for_state)
1978
+ idx += num_statistics
1979
+
1980
+ new_states = []
1981
+ for state, new_preconditioners, new_errors in zip(
1982
+ states, preconditioners_for_states, errors_for_states
1983
+ ):
1984
+ if state.statistics:
1985
+ new_errors = jnp.where(
1986
+ jnp.logical_and(
1987
+ new_errors > 0.0, new_errors != inverse_failure_threshold
1988
+ ),
1989
+ new_errors,
1990
+ state.training_metrics.inverse_pth_root_errors,
1991
+ )
1992
+ new_training_metrics = TrainingMetrics(new_errors)
1993
+ new_states.append(
1994
+ ParameterStats(
1995
+ state.diagonal_statistics,
1996
+ state.statistics,
1997
+ new_preconditioners,
1998
+ state.diagonal_momentum,
1999
+ state.momentum,
2000
+ new_training_metrics,
2001
+ )
2002
+ )
2003
+
2004
+ return new_states
2005
+
2006
+ def _compute_preconditioners(states, params, step):
2007
+ """Computes preconditioners for given statistics in states.
2008
+
2009
+ Args:
2010
+ states: A list of optimizer states.
2011
+ params: A list of params.
2012
+ step: Current step number
2013
+
2014
+ Returns:
2015
+ New optimizer states after computing the preconditioner.
2016
+ """
2017
+ statistics = []
2018
+ num_statistics_per_state = []
2019
+ original_shapes = []
2020
+ exponents = []
2021
+ max_size = 0
2022
+ prev_preconditioners = []
2023
+
2024
+ for state, param in zip(states, params):
2025
+ num_statistics = len(state.statistics)
2026
+ num_statistics_per_state.append(num_statistics)
2027
+ original_shapes_for_state = []
2028
+ if num_statistics > 0:
2029
+ preconditioner = Preconditioner(
2030
+ param, block_size, best_effort_shape_interpretation
2031
+ )
2032
+ for statistic in state.statistics:
2033
+ exponents.append(
2034
+ preconditioner.exponent_for_preconditioner()
2035
+ if exponent_override == 0
2036
+ else exponent_override
2037
+ )
2038
+ original_shapes_for_state.append(statistic.shape)
2039
+ max_size = max(max_size, statistic.shape[0])
2040
+
2041
+ statistics.extend(state.statistics)
2042
+ prev_preconditioners.extend(state.preconditioners)
2043
+ original_shapes.extend(original_shapes_for_state)
2044
+
2045
+ if batch_axis_name:
2046
+ # Quantization is only enabled if batch_axis_name is not set.
2047
+ quantized_dtype = quantized_dtype_for_second_moment_statistics_buffers()
2048
+
2049
+ if quantized_dtype == jnp.float32:
2050
+ return _pmap_compute_preconditioners(
2051
+ states,
2052
+ step,
2053
+ statistics,
2054
+ num_statistics_per_state,
2055
+ original_shapes,
2056
+ exponents,
2057
+ max_size,
2058
+ prev_preconditioners,
2059
+ )
2060
+ else:
2061
+ return _pmap_quantized_compute_preconditioners(
2062
+ states,
2063
+ step,
2064
+ statistics,
2065
+ num_statistics_per_state,
2066
+ original_shapes,
2067
+ exponents,
2068
+ max_size,
2069
+ prev_preconditioners,
2070
+ )
2071
+
2072
+ else:
2073
+ return _pjit_compute_preconditioners(
2074
+ states,
2075
+ step,
2076
+ statistics,
2077
+ num_statistics_per_state,
2078
+ original_shapes,
2079
+ exponents,
2080
+ max_size,
2081
+ prev_preconditioners,
2082
+ )
2083
+
2084
+ def _transform_grad(grad, state, param, step):
2085
+ """Transform per-parameter gradients."""
2086
+ preconditioner = Preconditioner(
2087
+ param, block_size, best_effort_shape_interpretation
2088
+ )
2089
+ sgd_update = grad
2090
+ new_diagonal_statistics = state.diagonal_statistics.to_float()
2091
+ if (
2092
+ graft_type == GraftingType.ADAGRAD
2093
+ or graft_type == GraftingType.ADAGRAD_NORMALIZED
2094
+ ):
2095
+
2096
+ scaled_grad = grad
2097
+ if graft_type == GraftingType.ADAGRAD_NORMALIZED:
2098
+ scaled_grad = grad / (jnp.linalg.norm(grad) + 1e-16)
2099
+
2100
+ new_diagonal_statistics = state.diagonal_statistics.to_float() + jnp.square(
2101
+ scaled_grad
2102
+ )
2103
+ adagrad_update = scaled_grad / (
2104
+ jnp.sqrt(new_diagonal_statistics) + diagonal_epsilon
2105
+ )
2106
+ grafting_update = adagrad_update
2107
+ elif (
2108
+ graft_type == GraftingType.RMSPROP
2109
+ or graft_type == GraftingType.RMSPROP_NORMALIZED
2110
+ ):
2111
+
2112
+ scaled_grad = grad
2113
+ if graft_type == GraftingType.RMSPROP_NORMALIZED:
2114
+ scaled_grad = grad / (jnp.linalg.norm(grad) + 1e-16)
2115
+
2116
+ w1 = beta2
2117
+ w2 = beta2 if beta2 == 1.0 else (1.0 - beta2)
2118
+
2119
+ new_diagonal_statistics = (
2120
+ w1 * state.diagonal_statistics.to_float() + w2 * jnp.square(scaled_grad)
2121
+ )
2122
+ rmsprop_update = scaled_grad / (
2123
+ jnp.sqrt(new_diagonal_statistics) + diagonal_epsilon
2124
+ )
2125
+
2126
+ if clip_by_scaled_gradient_norm:
2127
+ scaled_grad_norm = jnp.linalg.norm(rmsprop_update) / (
2128
+ jnp.sqrt(float(rmsprop_update.size))
2129
+ )
2130
+ clipping_denom = jnp.maximum(
2131
+ 1.0, scaled_grad_norm / clip_by_scaled_gradient_norm
2132
+ )
2133
+ rmsprop_update /= clipping_denom
2134
+
2135
+ grafting_update = rmsprop_update
2136
+ elif graft_type == GraftingType.SGD:
2137
+ grafting_update = sgd_update
2138
+ else:
2139
+ grafting_update = jnp.ones_like(sgd_update) * jnp.sign(sgd_update)
2140
+
2141
+ precond_grad = grad
2142
+ if not _skip_preconditioning(param):
2143
+ precond_grad = preconditioner.preconditioned_grad(
2144
+ precond_grad, _maybe_dequantize_preconditioners(state.preconditioners)
2145
+ )
2146
+ else:
2147
+ precond_grad = grafting_update
2148
+
2149
+ grafting_update_norm = jnp.linalg.norm(grafting_update)
2150
+ precond_grad_norm = jnp.linalg.norm(precond_grad)
2151
+
2152
+ multiplier = grafting_update_norm / (precond_grad_norm + 1e-16)
2153
+ shampoo_update = precond_grad * multiplier
2154
+
2155
+ shampoo_update_with_wd = shampoo_update
2156
+ grafting_update_with_wd = grafting_update
2157
+ if weight_decay != 0:
2158
+ shampoo_update_with_wd = shampoo_update + weight_decay * param
2159
+ grafting_update_with_wd = grafting_update + weight_decay * param
2160
+
2161
+ w = (1.0 - beta1) if moving_average_for_momentum else 1.0
2162
+
2163
+ shampoo_update_with_wd_momentum = (
2164
+ state.momentum.to_float() * beta1 + w * shampoo_update_with_wd
2165
+ )
2166
+
2167
+ if _graft_type_has_diagonal_momentum_states():
2168
+ grafting_update_with_wd_momentum = (
2169
+ state.diagonal_momentum.to_float() * beta1 + w * grafting_update_with_wd
2170
+ )
2171
+ else:
2172
+ # Share the momentum buffer
2173
+ grafting_update_with_wd_momentum = (
2174
+ state.momentum.to_float() * beta1 + w * grafting_update_with_wd
2175
+ )
2176
+
2177
+ run_shampoo = (step >= start_preconditioning_step).astype(
2178
+ grafting_update_with_wd_momentum.dtype
2179
+ )
2180
+
2181
+ momentum_update = (
2182
+ run_shampoo * shampoo_update_with_wd_momentum
2183
+ + (1.0 - run_shampoo) * grafting_update_with_wd_momentum
2184
+ )
2185
+
2186
+ wd_update = (
2187
+ run_shampoo * shampoo_update_with_wd
2188
+ + (1.0 - run_shampoo) * grafting_update_with_wd
2189
+ )
2190
+
2191
+ nesterov_momentum_update = momentum_update
2192
+ if nesterov:
2193
+ nesterov_momentum_update = w * wd_update + beta1 * momentum_update
2194
+
2195
+ lr = learning_rate
2196
+ if callable(learning_rate):
2197
+ lr = learning_rate(step)
2198
+ transformed_update = -1.0 * lr * nesterov_momentum_update
2199
+
2200
+ new_diagonal_momentum = grafting_update_with_wd_momentum
2201
+ new_momentum = shampoo_update_with_wd_momentum
2202
+ if not _graft_type_has_diagonal_momentum_states():
2203
+ new_diagonal_momentum = []
2204
+ new_momentum = momentum_update
2205
+
2206
+ param_stats = ParameterStats(
2207
+ _quantize_diagonal_statistics(new_diagonal_statistics),
2208
+ state.statistics,
2209
+ state.preconditioners,
2210
+ _quantize_momentum(new_diagonal_momentum),
2211
+ _quantize_momentum(new_momentum),
2212
+ state.training_metrics,
2213
+ )
2214
+
2215
+ return transformed_update, param_stats
2216
+
2217
+ def update_fn(grads, state, params):
2218
+ """Transform the input gradient and update all statistics.
2219
+
2220
+ Args:
2221
+ grads: the gradient tensors for the parameters.
2222
+ state: a named tuple containing the state of the optimizer
2223
+ params: the parameters that should be updated.
2224
+
2225
+ Returns:
2226
+ A tuple containing the new parameters and the new optimizer state.
2227
+ """
2228
+ params_flat, treedef = jax.tree_flatten(params)
2229
+ stats_flat = treedef.flatten_up_to(state.stats)
2230
+ grads_flat = treedef.flatten_up_to(grads)
2231
+
2232
+ new_stats_flat = jax.tree_multimap(
2233
+ lambda g, s, p: _compute_stats(g, s, p, state.count),
2234
+ grads_flat,
2235
+ stats_flat,
2236
+ params_flat,
2237
+ )
2238
+ new_stats_flat = _compute_preconditioners(
2239
+ new_stats_flat, params_flat, state.count
2240
+ )
2241
+ outputs = jax.tree_multimap(
2242
+ lambda g, s, p: _transform_grad(g, s, p, state.count),
2243
+ grads_flat,
2244
+ new_stats_flat,
2245
+ params_flat,
2246
+ )
2247
+ updates_flat, new_stats_flat = list(zip(*outputs)) if outputs else ((), ())
2248
+
2249
+ updates = jax.tree_unflatten(treedef, updates_flat)
2250
+ new_stats = jax.tree_unflatten(treedef, new_stats_flat)
2251
+
2252
+ new_state = ShampooState(count=state.count + 1, stats=new_stats)
2253
+ return updates, new_state
2254
+
2255
+ if shard_optimizer_states:
2256
+ # Hijacks the init_fn signature so we can return an OptState with
2257
+ # appropriate init_fns.
2258
+ def _init_fns(unused_params):
2259
+ return InitFnState(
2260
+ init_fn=sharded_init_fn,
2261
+ pspec_fn=sharded_init_partition_spec_fn,
2262
+ shape_and_dtype_fn=sharded_init_shape_and_dtype_fn,
2263
+ )
2264
+
2265
+ return optax.GradientTransformation(_init_fns, sharded_update_fn)
2266
+ else:
2267
+ return optax.GradientTransformation(init_fn, update_fn)
tools/train/scalable_shampoo/quantization_utils.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The Google Research Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """Helper routines for quantization."""
17
+
18
+ from typing import Any
19
+
20
+ import chex
21
+ import jax.numpy as jnp
22
+ from flax import struct
23
+
24
+
25
+ # pylint:disable=no-value-for-parameter
26
+ @struct.dataclass
27
+ class QuantizedValue:
28
+ """State associated with quantized value."""
29
+
30
+ quantized: chex.Array
31
+ diagonal: chex.Array # Diagonal (if extract_diagonal is set)
32
+ bucket_size: chex.Array
33
+ quantized_dtype: jnp.dtype = struct.field(
34
+ pytree_node=False
35
+ ) # Dtype for the quantized value.
36
+ extract_diagonal: bool = struct.field(pytree_node=False) # In case its centered.
37
+ shape: Any = struct.field(pytree_node=False) # Shape of the tensor.
38
+
39
+ @classmethod
40
+ def from_float_value(cls, fvalue, quantized_dtype, extract_diagonal=False):
41
+ if isinstance(fvalue, list) and not fvalue:
42
+ return QuantizedValue([], [], [], quantized_dtype, extract_diagonal, [])
43
+ quantized, diagonal_fvalue, bucket_size = QuantizedValue.quantize(
44
+ fvalue, quantized_dtype, extract_diagonal
45
+ )
46
+ return QuantizedValue(
47
+ quantized,
48
+ diagonal_fvalue,
49
+ bucket_size,
50
+ quantized_dtype,
51
+ extract_diagonal,
52
+ list(quantized.shape),
53
+ )
54
+
55
+ # Quantization is from Lingvo JAX optimizers.
56
+ # We extend it for int16 quantization of PSD matrices.
57
+ @classmethod
58
+ def quantize(cls, fvalue, quantized_dtype, extract_diagonal=False):
59
+ """Returns quantized value and the bucket."""
60
+ if quantized_dtype == jnp.float32:
61
+ return fvalue, [], []
62
+ elif quantized_dtype == jnp.bfloat16:
63
+ return fvalue.astype(jnp.bfloat16), [], []
64
+
65
+ float_dtype = fvalue.dtype
66
+ if quantized_dtype == jnp.int8:
67
+ # value -128 is not used.
68
+ num_buckets = jnp.array(127.0, dtype=float_dtype)
69
+ elif quantized_dtype == jnp.int16:
70
+ # value -32768 is not used.
71
+ num_buckets = jnp.array(32767.0, dtype=float_dtype)
72
+ else:
73
+ raise ValueError(f"Quantized dtype {quantized_dtype} not supported.")
74
+ # max value is mapped to num_buckets
75
+
76
+ if extract_diagonal and fvalue.ndim != 2:
77
+ raise ValueError(
78
+ f"Input array {fvalue} must be 2D to work with extract_diagonal."
79
+ )
80
+
81
+ diagonal_fvalue = []
82
+ if extract_diagonal:
83
+ diagonal_fvalue = jnp.diag(fvalue)
84
+ # Remove the diagonal entries.
85
+ fvalue = fvalue - jnp.diag(diagonal_fvalue)
86
+
87
+ # TODO(rohananil): Extend this by making use of information about the blocks
88
+ # SM3 style which will be useful for diagonal statistics
89
+ # We first decide the scale.
90
+ if fvalue.ndim < 1:
91
+ raise ValueError(
92
+ f"Input array {fvalue} must have a strictly positive number of "
93
+ "dimensions."
94
+ )
95
+
96
+ max_abs = jnp.max(jnp.abs(fvalue), axis=0)
97
+ bucket_size = max_abs / num_buckets
98
+ bs_expanded = bucket_size[jnp.newaxis, Ellipsis]
99
+ # To avoid divide by 0.0
100
+ bs_nonzero = jnp.where(
101
+ bs_expanded > 0.0, bs_expanded, jnp.ones_like(bs_expanded)
102
+ )
103
+ ratio = fvalue / bs_nonzero
104
+ # We use rounding to remove bias.
105
+ quantized = jnp.round(ratio)
106
+ return quantized.astype(quantized_dtype), diagonal_fvalue, bucket_size
107
+
108
+ def to_float(self):
109
+ """Returns the float value."""
110
+ if isinstance(self.quantized, list) and not self.quantized:
111
+ return self.quantized
112
+
113
+ if self.quantized_dtype == jnp.float32:
114
+ return self.quantized
115
+
116
+ if self.quantized_dtype == jnp.bfloat16:
117
+ return self.quantized.astype(jnp.float32)
118
+
119
+ float_dtype = self.bucket_size.dtype
120
+ bucket_size = self.bucket_size[jnp.newaxis, Ellipsis]
121
+ val = self.quantized.astype(float_dtype) * bucket_size
122
+ if self.extract_diagonal:
123
+ val += jnp.diag(self.diagonal)
124
+ return val
tools/train/scalable_shampoo/sm3.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The Google Research Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # An implementation of SM3 from:
17
+ #
18
+ # Memory-Efficient Adaptive Optimization, https://arxiv.org/pdf/1901.11150.pdf
19
+ # Rohan Anil, Vineet Gupta, Tomer Koren, Yoram Singer
20
+ #
21
+ # Author: Rohan Anil (rohananil at google dot com)
22
+ #
23
+
24
+ """SM3 Implementation."""
25
+
26
+ import functools
27
+ from typing import Any, NamedTuple
28
+
29
+ import chex
30
+ import jax
31
+ import jax.numpy as jnp
32
+ import optax
33
+
34
+ from .quantization_utils import QuantizedValue
35
+
36
+
37
+ class SM3State(NamedTuple):
38
+ count: chex.Array
39
+ stats: Any
40
+
41
+
42
+ # Per parameter optimizer state used in data-parallel training.
43
+ class ParameterStats(NamedTuple):
44
+ """State associated to each parameter of the model being trained."""
45
+
46
+ diagonal_statistics: chex.Array # Accumulator for diagonal preconditioner
47
+ diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner
48
+
49
+
50
+ def sm3(
51
+ learning_rate, beta1=0.9, beta2=0.999, diagonal_epsilon=1e-10, normalize_grads=False
52
+ ):
53
+ """SM3 optimizer.
54
+
55
+ Memory-Efficient Adaptive Optimization, Rohan Anil, Vineet Gupta, Tomer Koren,
56
+ Yoram Singer
57
+
58
+ https://arxiv.org/abs/1901.11150
59
+
60
+ Args:
61
+ learning_rate: the step size used to update the parameters.
62
+ beta1: momentum parameter.
63
+ beta2: second moment averaging parameter.
64
+ diagonal_epsilon: epsilon for sm3
65
+ normalize_grads: Whether to normalize grads. Author finds it useful when
66
+ grads are high variance.
67
+
68
+ Returns:
69
+ a GradientTransformation.
70
+ """
71
+
72
+ def _quantize_momentum(momentum_statistics):
73
+ return QuantizedValue.from_float_value(momentum_statistics, jnp.int8)
74
+
75
+ def init_fn(params):
76
+ """Initialise the optimiser's state."""
77
+
78
+ def _init(param):
79
+ accumulators = [jnp.zeros([s]) for s in param.shape]
80
+ momentum = _quantize_momentum(jnp.zeros_like(param))
81
+ return ParameterStats(accumulators, momentum)
82
+
83
+ return SM3State(
84
+ count=jnp.zeros([], jnp.int32), stats=jax.tree_map(_init, params)
85
+ )
86
+
87
+ def _get_expanded_shape(shape, i):
88
+ rank = len(shape)
89
+ # Replaces a `shape` of [M, N, K] with 1 in all dimensions except for i.
90
+ # For eg: i = 1 returns [1, N, 1].
91
+ return [1] * i + [shape[i]] + [1] * (rank - i - 1)
92
+
93
+ def _moving_averages(grad, accumulators):
94
+ w = (1.0 - beta2) if beta2 != 1.0 else 1.0
95
+ if grad.ndim < 2:
96
+ return beta2 * accumulators[0] + w * grad**2
97
+ else:
98
+ min_accumulator = functools.reduce(jnp.minimum, accumulators)
99
+ return beta2 * min_accumulator + w * grad**2
100
+
101
+ def _moving_averages_momentum(grad, momentum):
102
+ w = (1.0 - beta1) if beta1 != 1.0 else 1.0
103
+ return beta1 * momentum.to_float() + w * grad
104
+
105
+ def _sketch_diagonal_statistics(grad, updated_diagonal_statistics):
106
+ all_diagonal_statistics = []
107
+ for i in range(grad.ndim):
108
+ axes = list(range(i)) + list(range(i + 1, grad.ndim))
109
+ dim_diagonal_statistics = jnp.max(updated_diagonal_statistics, axis=axes)
110
+ all_diagonal_statistics.append(dim_diagonal_statistics)
111
+ if grad.ndim == 1:
112
+ all_diagonal_statistics[0] = updated_diagonal_statistics
113
+ return all_diagonal_statistics
114
+
115
+ def update_fn(updates, state, params=None):
116
+ del params
117
+ stats = state.stats
118
+ if normalize_grads:
119
+ updates = jax.tree_map(lambda g: g / (jnp.linalg.norm(g) + 1e-16), updates)
120
+ # Reshape all vectors into N-d tensors to compute min over them.
121
+ # [n], [m] -> [n, 1], [1, m]
122
+ expanded_diagonal_statistics = jax.tree_multimap(
123
+ lambda grad, state: [ # pylint:disable=g-long-lambda
124
+ jnp.reshape(
125
+ state.diagonal_statistics[i], _get_expanded_shape(grad.shape, i)
126
+ )
127
+ for i in range(grad.ndim)
128
+ ],
129
+ updates,
130
+ stats,
131
+ )
132
+
133
+ # Compute new diagonal statistics
134
+ new_diagonal_statistics = jax.tree_multimap(
135
+ _moving_averages, updates, expanded_diagonal_statistics
136
+ )
137
+
138
+ # Compute preconditioners (1/sqrt(s)) where s is the statistics.
139
+ new_preconditioners = jax.tree_map(
140
+ lambda t: 1.0 / jnp.sqrt(t + diagonal_epsilon), new_diagonal_statistics
141
+ )
142
+ preconditioned_grads = jax.tree_multimap(
143
+ lambda g, p: g * p, updates, new_preconditioners
144
+ )
145
+
146
+ # Compute updated momentum (also handle quantization)
147
+ updated_momentum = jax.tree_multimap(
148
+ lambda preconditioned_grad, state: _moving_averages_momentum( # pylint:disable=g-long-lambda
149
+ preconditioned_grad, state.diagonal_momentum
150
+ ),
151
+ preconditioned_grads,
152
+ stats,
153
+ )
154
+
155
+ # Update diagonal statistics.
156
+ updated_diagonal_statistics = jax.tree_multimap(
157
+ _sketch_diagonal_statistics, updates, new_diagonal_statistics
158
+ )
159
+
160
+ # Update momentum.
161
+ new_sm3_stats = jax.tree_multimap(
162
+ lambda momentum, diagonal_stats: ParameterStats( # pylint:disable=g-long-lambda
163
+ diagonal_stats, _quantize_momentum(momentum)
164
+ ),
165
+ updated_momentum,
166
+ updated_diagonal_statistics,
167
+ )
168
+
169
+ lr = learning_rate
170
+ if callable(learning_rate):
171
+ lr = learning_rate(state.count)
172
+
173
+ new_updates = jax.tree_map(lambda pg: -lr * pg, updated_momentum)
174
+ return new_updates, SM3State(count=state.count + 1, stats=new_sm3_stats)
175
+
176
+ return optax.GradientTransformation(init_fn, update_fn)
tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The Google Research Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """JAX Ops for symmetric matrices used by the Shampoo optimizer."""
17
+
18
+ import functools
19
+ from typing import Any, List, Optional, Sequence, Union
20
+
21
+ import jax
22
+ import jax.numpy as jnp
23
+ import numpy as np
24
+ from flax import struct
25
+ from jax import lax
26
+
27
+
28
+ @struct.dataclass
29
+ class SlicedSymmetricMatrix:
30
+ """A symmetric matrix represented by lower-triangular block row slices.
31
+
32
+ For example, the symmetric matrix M = [[a, b^T], [b, c]] would be represented
33
+ by the block rows a and [b, c].
34
+
35
+ The matrix may be batched, in which case each entry of block_rows may have
36
+ dimension greater than 2. The last two dimensions represent the rows and cols.
37
+ """
38
+
39
+ block_rows: List[jnp.ndarray]
40
+
41
+
42
+ def product_with_transpose(
43
+ mat1,
44
+ mat2,
45
+ axes,
46
+ precision=lax.Precision.DEFAULT,
47
+ ):
48
+ """Returns mat1 * mat2^T for two matrices (possibly batched).
49
+
50
+ The rows and columns are the last two dimensions for each matrix.
51
+
52
+ Args:
53
+ mat1: First matrix.
54
+ mat2: Second matrix.
55
+ axes: The axes over which to apply the product.
56
+ precision: JAX precision to use for the multiplication.
57
+ """
58
+ return jnp.tensordot(a=mat1, b=mat2, axes=axes, precision=precision)
59
+
60
+
61
+ @functools.partial(jax.jit, static_argnames=("block_size", "axes", "precision"))
62
+ def sliced_transposed_product(
63
+ mat,
64
+ block_size,
65
+ axes=(-1,),
66
+ precision=lax.Precision.DEFAULT,
67
+ ):
68
+ """Returns the blocked slices representing a symmetric contraction.
69
+
70
+ Specifically, the output is a contraction of the input mat with itself, in the
71
+ specified axes.
72
+
73
+ Args:
74
+ mat: The matrix for which we will compute a contraction with itself.
75
+ block_size: The size of row blocks to compute.
76
+ axes: Axes to use for the contraction.
77
+ precision: The precision to use in each computation.
78
+
79
+ Raises:
80
+ ValueError: Raised when the specified block size does not evenly divide
81
+ the number of rows of the input mat.
82
+ """
83
+ rank = len(mat.shape)
84
+
85
+ def _make_axis_positive(ax):
86
+ assert -rank <= ax < rank
87
+ return ax + rank if ax < 0 else ax
88
+
89
+ positive_axes = [_make_axis_positive(ax) for ax in axes]
90
+ assert len(positive_axes) == len(axes)
91
+ remaining_axes = set(range(rank)) - set(positive_axes)
92
+ assert len(remaining_axes) == 1
93
+ remaining_ax = remaining_axes.pop()
94
+
95
+ num_rows = mat.shape[remaining_ax]
96
+ if num_rows % block_size != 0:
97
+ raise ValueError(
98
+ "The row dimension must be divisible by block_size. "
99
+ f"Instead got row dimension={num_rows} and block_size={block_size}."
100
+ )
101
+
102
+ block_rows = []
103
+ for i in range(num_rows // block_size):
104
+ start_indices = [0] * rank
105
+ start_indices[remaining_ax] = i * block_size
106
+
107
+ slice_sizes = list(mat.shape)
108
+ slice_sizes[remaining_ax] = block_size
109
+
110
+ slice_sizes_full = list(mat.shape)
111
+ slice_sizes_full[remaining_ax] = (i + 1) * block_size
112
+
113
+ block_rows.append(
114
+ product_with_transpose(
115
+ lax.dynamic_slice(
116
+ mat, start_indices=start_indices, slice_sizes=slice_sizes
117
+ ),
118
+ lax.dynamic_slice(
119
+ mat, start_indices=[0] * rank, slice_sizes=slice_sizes_full
120
+ ),
121
+ axes=(axes, axes),
122
+ precision=precision,
123
+ )
124
+ )
125
+
126
+ return SlicedSymmetricMatrix(block_rows=block_rows)
127
+
128
+
129
+ @functools.partial(jax.jit, static_argnames=("block_size", "axes", "precision"))
130
+ def sliced_transposed_product_concat(
131
+ mat,
132
+ block_size,
133
+ axes=(-1,),
134
+ precision=lax.Precision.DEFAULT,
135
+ ):
136
+ """Returns the concatenated slices representing mat*mat^T.
137
+
138
+ Args:
139
+ mat: The matrix for which we will compute mat*mat^T. It does not need to be
140
+ square, and may be batched.
141
+ block_size: The size of row blocks to compute.
142
+ axes: Axes to use for the contraction.
143
+ precision: The precision to use in each computation.
144
+
145
+ Raises:
146
+ ValueError: Raised when the specified block size does not evenly divide
147
+ the number of rows of the input mat.
148
+ """
149
+ sliced_symmetric_matrix = sliced_transposed_product(
150
+ mat=mat, block_size=block_size, axes=axes, precision=precision
151
+ )
152
+ return jnp.concatenate(sliced_symmetric_matrix.block_rows, axis=-1)
153
+
154
+
155
+ @jax.jit
156
+ def materialize_matrix(symmetric_matrix):
157
+ """Returns a materialized symmetric matrix.
158
+
159
+ Args:
160
+ symmetric_matrix: the matrix represented by lower-triangular block slices.
161
+ """
162
+ block_rows = symmetric_matrix.block_rows
163
+ block_size = block_rows[0].shape[-2]
164
+ num_blocks = len(block_rows)
165
+
166
+ # Slice the lower-triangular and diagonal blocks into blocks.
167
+ blocks = [
168
+ [
169
+ block_row[Ellipsis, i * block_size : (i + 1) * block_size]
170
+ for i in range(k + 1)
171
+ ]
172
+ for k, block_row in enumerate(block_rows)
173
+ ]
174
+
175
+ # Generate the (off-diagonal) upper-triangular blocks.
176
+ off_diags = [[] for _ in range(num_blocks - 1)]
177
+ for k, block_row in enumerate(block_rows[1:]):
178
+ for i in range(k + 1):
179
+ off_diags[i].append(
180
+ jnp.swapaxes(
181
+ a=block_row[Ellipsis, i * block_size : (i + 1) * block_size],
182
+ axis1=-1,
183
+ axis2=-2,
184
+ )
185
+ )
186
+
187
+ return jnp.block(
188
+ [row + row_t for row, row_t in zip(blocks[:-1], off_diags)] + [blocks[-1]]
189
+ )
190
+
191
+
192
+ @functools.partial(jax.jit, static_argnames=("num_blocks"))
193
+ def materialize_matrix_from_concat(
194
+ block_rows_concat,
195
+ num_blocks=None,
196
+ ):
197
+ """Returns a materialized symmetric matrix from concatenated slices.
198
+
199
+ Args:
200
+ block_rows_concat: The matrix represented as the concatenated
201
+ lower-triangular blocks.
202
+ num_blocks: The number of block-rows used to represent the symmetric matrix.
203
+ If not specified, it is inferred from the shape of block_rows_concat.
204
+ """
205
+ if num_blocks is None:
206
+ num_blocks = find_num_blocks(block_rows_concat)
207
+
208
+ block_size = block_rows_concat.shape[-2]
209
+
210
+ block_rows = [
211
+ block_rows_concat[
212
+ Ellipsis,
213
+ (k * (k + 1))
214
+ // 2
215
+ * block_size : (((k + 1) * (k + 2)) // 2 + 1)
216
+ * block_size,
217
+ ]
218
+ for k in range(num_blocks)
219
+ ]
220
+
221
+ return materialize_matrix(SlicedSymmetricMatrix(block_rows=block_rows))
222
+
223
+
224
+ @functools.partial(jax.jit, static_argnames=("alpha", "beta", "axes"))
225
+ def update_sliced_rows(
226
+ symmetric_matrix,
227
+ mat,
228
+ alpha,
229
+ beta,
230
+ axes=(-1,),
231
+ ):
232
+ """Implements the blocked equivalent of SYRK.
233
+
234
+ Specifically, the symmetric matrix (represented using lower-triangular block
235
+ rows) is updated using the sliced product of mat.
236
+
237
+ Args:
238
+ symmetric_matrix: The symmetric matrix to update.
239
+ mat: The matrix to use for the update = mat * mat^T. The number of rows
240
+ should match that of symmetric_matrix.
241
+ alpha: The weight for the update.
242
+ beta: The weight for the original symmetric matrix.
243
+ axes: Axes to use for the contraction of the update.
244
+
245
+ Returns:
246
+ The updated rows of alpha * mat * mat^T + beta * symmetric_matrix.
247
+ """
248
+ block_size = symmetric_matrix.block_rows[0].shape[-2]
249
+ sym_prod = sliced_transposed_product(mat=mat, block_size=block_size, axes=axes)
250
+ return SlicedSymmetricMatrix(
251
+ block_rows=[
252
+ update * alpha + row * beta
253
+ for update, row in zip(sym_prod.block_rows, symmetric_matrix.block_rows)
254
+ ]
255
+ )
256
+
257
+
258
+ def num_blocks_from_total_blocks(total_blocks):
259
+ """Returns the number of blocks (i.e.
260
+
261
+ block rows) from the total blocks.
262
+
263
+ This is the inverse of the function x -> x*(x+1)/2.
264
+
265
+ For example, the matrix M = [[A, B^T], [B, C]] may be represented using a
266
+ total of 3 blocks ([A, B, C]). The number of corresponding block rows is 2.
267
+
268
+ Args:
269
+ total_blocks: The total blocks used to represent the matrix.
270
+ """
271
+ num_blocks = np.round((np.sqrt(8 * total_blocks + 1) - 1) / 2).astype(np.int32)
272
+ if (num_blocks * (num_blocks + 1)) / 2 != total_blocks:
273
+ raise ValueError(
274
+ f"total_blocks={total_blocks} does not correspond to "
275
+ "a symmetric matrix. It must have the form total_blocks = x*(x+1)/2."
276
+ )
277
+ return num_blocks
278
+
279
+
280
+ def find_num_blocks(block_rows_concat):
281
+ """Returns the number of (row) blocks representing the concatenated matrix.
282
+
283
+ For example, an input with dimensions [256, 2560] represents 10 square blocks,
284
+ which matches 4 lower-triangular block rows (1+2+3+4). So this function will
285
+ return 4.
286
+
287
+ Use ordinary numpy functions here so that the returned value is static.
288
+
289
+ Args:
290
+ block_rows_concat: The concatenated block array.
291
+
292
+ Raises:
293
+ ValueError: When the dimensions of the matrix do not correspond to a lower
294
+ triangular block representation.
295
+ """
296
+ # Compute the number of square blocks used to represent the matrix.
297
+ total_blocks = block_rows_concat.shape[-1] / block_rows_concat.shape[-2]
298
+ # Determine the number of block rows by inverting y = x*(x+1)/2.
299
+ return num_blocks_from_total_blocks(total_blocks)
300
+
301
+
302
+ @functools.partial(jax.jit, static_argnames=("block_size"))
303
+ def slice_symmetric_matrix(
304
+ mat,
305
+ block_size,
306
+ ):
307
+ """Returns sliced row blocks.
308
+
309
+ Args:
310
+ mat: A symmetric matrix.
311
+ block_size: The size of the row slices.
312
+ """
313
+ num_rows = mat.shape[-2]
314
+ num_cols = mat.shape[-1]
315
+ if num_rows != num_cols:
316
+ raise ValueError("mat is not square.")
317
+ if num_rows % block_size != 0:
318
+ raise ValueError(
319
+ "block size does not evenly divide rows. "
320
+ f"num_rows={num_rows}, block_size={block_size}"
321
+ )
322
+ return SlicedSymmetricMatrix(
323
+ block_rows=[
324
+ mat[
325
+ Ellipsis,
326
+ i * block_size : (i + 1) * block_size,
327
+ 0 : (i + 1) * block_size,
328
+ ]
329
+ for i in range(num_rows // block_size)
330
+ ]
331
+ )
332
+
333
+
334
+ @functools.partial(jax.jit, static_argnames=("block_size"))
335
+ def slice_symmetric_matrix_concat(
336
+ mat,
337
+ block_size,
338
+ ):
339
+ """Returns the concatenated sliced row blocks.
340
+
341
+ Args:
342
+ mat: A symmetric matrix.
343
+ block_size: The size of the row slices.
344
+ """
345
+ sliced_symmetric_matrix = slice_symmetric_matrix(mat=mat, block_size=block_size)
346
+ return jnp.concatenate(sliced_symmetric_matrix.block_rows, axis=-1)
347
+
348
+
349
+ def sliced_matrix_diag(mat):
350
+ """Returns the diagonal of the symmetric matrix.
351
+
352
+ Args:
353
+ mat: The symmetric matrix represented in concatenated block form.
354
+ """
355
+ rows, cols = mat.shape
356
+ total_blocks = cols // rows
357
+ num_blocks = num_blocks_from_total_blocks(total_blocks)
358
+ diags = []
359
+ for i in range(num_blocks):
360
+ last_index = rows * ((i + 2) * (i + 1)) // 2
361
+ first_index = last_index - rows
362
+ diags.append(jnp.diag(mat[Ellipsis, first_index:last_index]))
363
+ return jnp.concatenate(diags, axis=-1)
364
+
365
+
366
+ def diag_as_concat(diag, block_size):
367
+ """Returns the representation of a diagonal matrix in symmetric block form.
368
+
369
+ Args:
370
+ diag: The 1D array for the diagonals.
371
+ block_size: The size of blocks to use. Must divide the length of diag.
372
+ """
373
+ assert len(diag.shape) == 1 # diag must be 1D.
374
+ assert len(diag) % block_size == 0
375
+ num_diag_blocks = len(diag) // block_size
376
+ blocks = []
377
+ for i in range(num_diag_blocks):
378
+ blocks.append(jnp.zeros(shape=(block_size, block_size * i), dtype=diag.dtype))
379
+ blocks.append(jnp.diag(diag[i * block_size : (i + 1) * block_size]))
380
+ return jnp.concatenate(blocks, axis=-1)
381
+
382
+
383
+ def row_abs_maxes(mat):
384
+ """Returns the max of the absolute values of the rows of the full matrix.
385
+
386
+ For example the symmetric matrix M = [[1, 6], [6, 2]] is represented using
387
+ mat = [1, 6, 2] with block_size = 1. In this case the function returns the
388
+ aboslute row maxes of the original symmetric matrix, [6, 6].
389
+
390
+ Args:
391
+ mat: The symmetric matrix represented as the concatenated blocks.
392
+ """
393
+ rows, cols = mat.shape
394
+
395
+ # Find col and row max for each block.
396
+ col_maxes = []
397
+ row_maxes = []
398
+ for i in range(cols // rows):
399
+ block = jnp.abs(mat[Ellipsis, i * rows : (i + 1) * rows])
400
+ col_maxes.append(jnp.max(block, axis=1))
401
+ row_maxes.append(jnp.max(block, axis=0))
402
+
403
+ # global row max from block maxes.
404
+ num_blocks = num_blocks_from_total_blocks(cols // rows)
405
+ maxes = []
406
+ for i in range(num_blocks):
407
+ maxes.append(
408
+ jnp.concatenate(
409
+ row_maxes[(i * (i + 1) // 2) : ((i + 2) * (i + 1) // 2)]
410
+ + [
411
+ col_maxes[((j + 1) * (j + 2)) // 2 - (j - i + 1)]
412
+ for j in range(i + 1, num_blocks)
413
+ ],
414
+ axis=-1,
415
+ )
416
+ )
417
+
418
+ return jnp.max(jnp.stack(maxes), axis=0)
419
+
420
+
421
+ def times_vector(mat, vec):
422
+ """Returns the symmetric block-concatenated matrix multiplied by a vector.
423
+
424
+ Specifically, each value in the vector is multiplied by a row of the full
425
+ matrix. That is, the vector is broadcast and multiplied element-wise. Note
426
+ this would be the transpose of full_mat * vec if full_mat represented the full
427
+ symmetric matrix.
428
+
429
+ Args:
430
+ mat: The symmetric matrix represented as the concatenated blocks.
431
+ vec: The vector, having the same dimension as the materialized matrix.
432
+ """
433
+ rows, cols = mat.shape
434
+ num_blocks = num_blocks_from_total_blocks(cols // rows)
435
+ multiplied = []
436
+ for i in range(num_blocks):
437
+ mat_block = mat[
438
+ Ellipsis, rows * ((i + 1) * i) // 2 : rows * ((i + 1) * (i + 2)) // 2
439
+ ]
440
+ vec_block = vec[Ellipsis, rows * i : rows * (i + 1)]
441
+ multiplied.append(jnp.einsum("...ij,...i->ij", mat_block, vec_block))
442
+ return jnp.concatenate(multiplied, axis=-1)
tools/train/sweep.yaml ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program: train.py
2
+ project: dalle-mini
3
+ method: random
4
+ metric:
5
+ name: eval/loss
6
+ goal: minimize
7
+ parameters:
8
+ optim:
9
+ value: distributed_shampoo
10
+ learning_rate:
11
+ distribution: log_uniform
12
+ # from exp(min) to exp(max)
13
+ min: -9.2
14
+ max: -6.9
15
+ tokenizer_name:
16
+ value: boris/dalle-mini-tokenizer
17
+ config_name:
18
+ value: ./config/mini
19
+ dtype:
20
+ value: bfloat16
21
+ dataset_repo_or_path:
22
+ value: ./data
23
+ per_device_train_batch_size:
24
+ value: 64
25
+ per_device_eval_batch_size:
26
+ value: 64
27
+ gradient_accumulation_steps:
28
+ value: 1
29
+ warmup_steps:
30
+ value: 1000
31
+ num_train_epochs:
32
+ value: 1
33
+ max_train_samples:
34
+ value: 1000000
35
+ logging_steps:
36
+ value: 40
37
+ eval_steps:
38
+ value: 200
39
+
40
+ command:
41
+ - python3
42
+ - ${program}
43
+ - "--streaming"
44
+ - "--output_dir"
45
+ - "./output"
46
+ - "--overwrite_output_dir"
47
+ - "--do_train"
48
+ - "--do_eval"
49
+ - ${args}
tools/train/train.py ADDED
@@ -0,0 +1,1436 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021-2022 The HuggingFace & DALL·E Mini team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Training DALL·E Mini.
18
+ Script adapted from run_summarization_flax.py
19
+ """
20
+
21
+ import io
22
+ import logging
23
+ import os
24
+ import sys
25
+ import tempfile
26
+ import time
27
+ from dataclasses import asdict, dataclass, field
28
+ from pathlib import Path
29
+ from typing import Any, Callable, NamedTuple, Optional
30
+
31
+ import datasets
32
+ import flax
33
+ import jax
34
+ import jax.numpy as jnp
35
+ import jaxlib
36
+ import numpy as np
37
+ import optax
38
+ import transformers
39
+ import wandb
40
+ from datasets import Dataset
41
+ from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
42
+ from flax.serialization import from_bytes, to_bytes
43
+ from flax.training import train_state
44
+ from flax.training.common_utils import onehot
45
+ from jax.experimental import PartitionSpec, maps
46
+ from jax.experimental.compilation_cache import compilation_cache as cc
47
+ from jax.experimental.pjit import pjit, with_sharding_constraint
48
+ from scalable_shampoo.distributed_shampoo import GraftingType, distributed_shampoo
49
+ from tqdm import tqdm
50
+ from transformers import HfArgumentParser
51
+
52
+ import dalle_mini
53
+ from dalle_mini.data import Dataset
54
+ from dalle_mini.model import (
55
+ DalleBart,
56
+ DalleBartConfig,
57
+ DalleBartTokenizer,
58
+ set_partitions,
59
+ )
60
+
61
+ try:
62
+ from google.cloud import storage
63
+ except:
64
+ storage = None
65
+
66
+ cc.initialize_cache("./jax_cache", max_cache_size_bytes=10 * 2**30)
67
+
68
+ logger = logging.getLogger(__name__)
69
+
70
+
71
+ @dataclass
72
+ class ModelArguments:
73
+ """
74
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
75
+ """
76
+
77
+ model_name_or_path: Optional[str] = field(
78
+ default=None,
79
+ metadata={
80
+ "help": "The model checkpoint for weights initialization. "
81
+ "Don't set if you want to train a model from scratch. "
82
+ "W&B artifact references are supported in addition to the sources supported by `PreTrainedModel`."
83
+ },
84
+ )
85
+ config_name: Optional[str] = field(
86
+ default=None,
87
+ metadata={
88
+ "help": "Pretrained config name or path if not the same as model_name_or_path"
89
+ },
90
+ )
91
+ tokenizer_name: Optional[str] = field(
92
+ default=None,
93
+ metadata={
94
+ "help": "Pretrained tokenizer name or path if not the same as model_name_or_path"
95
+ },
96
+ )
97
+ dtype: Optional[str] = field(
98
+ default="float32",
99
+ metadata={
100
+ "help": "Floating-point format in which the computations will be performed (not the model weights). Choose one of `[float32, float16, bfloat16]`."
101
+ },
102
+ )
103
+ restore_state: Optional[bool] = field(
104
+ default=False,
105
+ metadata={
106
+ "help": "Restore optimizer and training state. Can be True (will retrieve associated wandb artifact), a local directory or a Google bucket path."
107
+ },
108
+ )
109
+
110
+ def __post_init__(self):
111
+ if self.tokenizer_name is None:
112
+ self.tokenizer_name = self.model_name_or_path
113
+ assert (
114
+ self.tokenizer_name is not None
115
+ ), "Tokenizer name or model name/path needs to be specified"
116
+ if self.restore_state:
117
+ assert self.model_name_or_path is not None and (
118
+ "/model-" in self.model_name_or_path
119
+ ), "Restoring state only available with W&B artifact reference"
120
+
121
+ def get_metadata(self):
122
+ if self.restore_state:
123
+ if jax.process_index() == 0:
124
+ artifact = wandb.run.use_artifact(self.model_name_or_path)
125
+ else:
126
+ artifact = wandb.Api().artifact(self.model_name_or_path)
127
+ return artifact.metadata
128
+ else:
129
+ return dict()
130
+
131
+ def get_opt_state(self):
132
+ with tempfile.TemporaryDirectory() as tmp_dir: # avoid multiple artifact copies
133
+ if self.restore_state is True:
134
+ # wandb artifact
135
+ state_artifact = self.model_name_or_path.replace(
136
+ "/model-", "/state-", 1
137
+ )
138
+ if jax.process_index() == 0:
139
+ artifact = wandb.run.use_artifact(state_artifact)
140
+ else:
141
+ artifact = wandb.Api().artifact(state_artifact)
142
+ if artifact.metadata.get("bucket_path"):
143
+ # we will read directly file contents
144
+ self.restore_state = artifact.metadata["bucket_path"]
145
+ else:
146
+ artifact_dir = artifact.download(tmp_dir)
147
+ self.restore_state = str(Path(artifact_dir) / "opt_state.msgpack")
148
+
149
+ if self.restore_state.startswith("gs://"):
150
+ bucket_path = Path(self.restore_state[5:]) / "opt_state.msgpack"
151
+ bucket, blob_name = str(bucket_path).split("/", 1)
152
+ assert (
153
+ storage is not None
154
+ ), 'Could not find google.storage. Install with "pip install google-cloud-storage"'
155
+ client = storage.Client()
156
+ bucket = client.bucket(bucket)
157
+ blob = bucket.blob(blob_name)
158
+ return blob.download_as_bytes()
159
+
160
+ with Path(self.restore_state).open("rb") as f:
161
+ return f.read()
162
+
163
+
164
+ @dataclass
165
+ class DataTrainingArguments:
166
+ """
167
+ Arguments pertaining to what data we are going to input our model for training and eval.
168
+ """
169
+
170
+ text_column: Optional[str] = field(
171
+ default="caption",
172
+ metadata={
173
+ "help": "The name of the column in the datasets containing the full texts (for summarization)."
174
+ },
175
+ )
176
+ encoding_column: Optional[str] = field(
177
+ default="encoding",
178
+ metadata={
179
+ "help": "The name of the column in the datasets containing the image encodings."
180
+ },
181
+ )
182
+ dataset_repo_or_path: str = field(
183
+ default=None,
184
+ metadata={"help": "The dataset repository containing encoded files."},
185
+ )
186
+ train_file: Optional[str] = field(
187
+ default=None,
188
+ metadata={
189
+ "help": "The input training data file (glob & braceexpand acceptable)."
190
+ },
191
+ )
192
+ validation_file: Optional[str] = field(
193
+ default=None,
194
+ metadata={
195
+ "help": "An optional input evaluation data file (glob & braceexpand acceptable)."
196
+ },
197
+ )
198
+ # data loading should not be a bottleneck so we use "streaming" mode by default
199
+ streaming: Optional[bool] = field(
200
+ default=True,
201
+ metadata={"help": "Whether to stream the dataset."},
202
+ )
203
+ use_auth_token: Optional[bool] = field(
204
+ default=False,
205
+ metadata={
206
+ "help": "Whether to use the authentication token for private datasets."
207
+ },
208
+ )
209
+ shard_by_host: Optional[bool] = field(
210
+ default=False,
211
+ metadata={
212
+ "help": "Whether to shard data files by host in multi-host environments."
213
+ },
214
+ )
215
+ blank_caption_prob: Optional[float] = field(
216
+ default=0.0,
217
+ metadata={
218
+ "help": "Probability of removing some captions for classifier-free guidance."
219
+ },
220
+ )
221
+ clip_score_column: Optional[str] = field(
222
+ default="clip_score",
223
+ metadata={"help": "Column that containts clip score for filtering."},
224
+ )
225
+ min_clip_score: Optional[float] = field(
226
+ default=None,
227
+ metadata={"help": "Minimum clip score required."},
228
+ )
229
+ max_clip_score: Optional[float] = field(
230
+ default=None,
231
+ metadata={"help": "Maximum clip score required."},
232
+ )
233
+ filter_column: Optional[str] = field(
234
+ default=None,
235
+ metadata={"help": "Column that containts classes to be filtered."},
236
+ )
237
+ filter_value: Optional[str] = field(
238
+ default=None,
239
+ metadata={"help": "Class value to be kept during filtering."},
240
+ )
241
+ max_train_samples: Optional[int] = field(
242
+ default=None,
243
+ metadata={
244
+ "help": "For debugging purposes or quicker training, truncate the number of training examples."
245
+ },
246
+ )
247
+ max_eval_samples: Optional[int] = field(
248
+ default=None,
249
+ metadata={
250
+ "help": "For debugging purposes or quicker training, truncate the number of evaluation examples."
251
+ },
252
+ )
253
+ preprocessing_num_workers: Optional[int] = field(
254
+ default=None,
255
+ metadata={
256
+ "help": "The number of processes to use for the preprocessing. Not used in streaming mode."
257
+ },
258
+ )
259
+ overwrite_cache: bool = field(
260
+ default=False,
261
+ metadata={
262
+ "help": "Overwrite the cached training and evaluation sets. Not used in streaming mode."
263
+ },
264
+ )
265
+ # default seed of None ensures we don't repeat the same items if script was interrupted during an epoch
266
+ seed_dataset: int = field(
267
+ default=None,
268
+ metadata={
269
+ "help": "Random seed for the dataset that will be set at the beginning of training."
270
+ },
271
+ )
272
+
273
+ def __post_init__(self):
274
+ if self.dataset_repo_or_path is None:
275
+ raise ValueError("Need a dataset repository or path.")
276
+
277
+
278
+ @dataclass
279
+ class TrainingArguments:
280
+ """
281
+ Arguments pertaining to training parameters.
282
+ """
283
+
284
+ output_dir: str = field(
285
+ metadata={
286
+ "help": "The output directory where the model predictions and checkpoints will be written."
287
+ },
288
+ )
289
+ overwrite_output_dir: bool = field(
290
+ default=False,
291
+ metadata={
292
+ "help": (
293
+ "Overwrite the content of the output directory. "
294
+ "Use this to continue training if output_dir points to a checkpoint directory."
295
+ )
296
+ },
297
+ )
298
+
299
+ do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
300
+ do_eval: bool = field(
301
+ default=False, metadata={"help": "Whether to run eval on the validation set."}
302
+ )
303
+
304
+ per_device_train_batch_size: int = field(
305
+ default=8,
306
+ metadata={"help": "Batch size per data parallel device for training."},
307
+ )
308
+ per_device_eval_batch_size: Optional[int] = field(
309
+ default=None,
310
+ metadata={
311
+ "help": "Batch size per data parallel device for evaluation. Same as training batch size if not set."
312
+ },
313
+ )
314
+
315
+ gradient_accumulation_steps: int = field(
316
+ default=1,
317
+ metadata={
318
+ "help": "Number of updates steps to accumulate before performing an update pass."
319
+ },
320
+ )
321
+ gradient_checkpointing: bool = field(
322
+ default=False, metadata={"help": "Use gradient checkpointing."}
323
+ )
324
+
325
+ learning_rate: float = field(
326
+ default=5e-5, metadata={"help": "The initial learning rate."}
327
+ )
328
+ optim: str = field(
329
+ default="distributed_shampoo",
330
+ metadata={
331
+ "help": 'The optimizer to use. Can be "distributed_shampoo" (default), "adam" or "adafactor"'
332
+ },
333
+ )
334
+ beta1: float = field(
335
+ default=0.9,
336
+ metadata={"help": "Beta1 for Adam & Distributed Shampoo."},
337
+ )
338
+ beta2: float = field(
339
+ default=0.999,
340
+ metadata={"help": "Beta2 for for Adam & Distributed Shampoo."},
341
+ )
342
+ adam_epsilon: float = field(
343
+ default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}
344
+ )
345
+ max_grad_norm: float = field(
346
+ default=1.0, metadata={"help": "Max gradient norm for Adafactor."}
347
+ )
348
+ block_size: int = field(
349
+ default=1024,
350
+ metadata={"help": "Chunked size for large layers with Distributed Shampoo."},
351
+ )
352
+ preconditioning_compute_steps: int = field(
353
+ default=10, metadata={"help": "Number of steps to update preconditioner."}
354
+ )
355
+ skip_preconditioning_dim_size_gt: int = field(
356
+ default=4096,
357
+ metadata={"help": "Max size for preconditioning with Distributed Shampoo."},
358
+ )
359
+ graft_type: str = field(
360
+ default="rmsprop_normalized",
361
+ metadata={
362
+ "help": "The type of grafting to use. Can be 'rmsprop_normalized' (default), 'rmsprop', 'adagrad', 'adagrad_normalized', 'sgd' or 'sqrt_n'"
363
+ },
364
+ )
365
+ optim_quantized: bool = field(
366
+ default=False,
367
+ metadata={
368
+ "help": "Whether to quantize optimizer (only supported with Distributed Shampoo)."
369
+ },
370
+ )
371
+
372
+ num_train_epochs: int = field(
373
+ default=3, metadata={"help": "Total number of training epochs to perform."}
374
+ )
375
+
376
+ warmup_steps: int = field(
377
+ default=0, metadata={"help": "Linear warmup over warmup_steps."}
378
+ )
379
+ lr_decay: str = field(
380
+ default=None,
381
+ metadata={
382
+ "help": "Decay to be used in the learning rate scheduler. Can be None (default), linear or exponential."
383
+ },
384
+ )
385
+ lr_transition_steps: int = field(
386
+ default=None,
387
+ metadata={
388
+ "help": "Number of transition steps associated with learning rate decay when using exponential decay."
389
+ },
390
+ )
391
+ lr_decay_rate: float = field(
392
+ default=None,
393
+ metadata={
394
+ "help": "Decay rate associated with learning rate when using exponential decay."
395
+ },
396
+ )
397
+ lr_staircase: bool = field(
398
+ default=False,
399
+ metadata={
400
+ "help": "Whether to use staircase or continuous learning rate when using exponential decay."
401
+ },
402
+ )
403
+
404
+ logging_steps: int = field(
405
+ default=40, metadata={"help": "Log every X updates steps."}
406
+ )
407
+ eval_steps: int = field(
408
+ default=400, metadata={"help": "Run an evaluation every X steps."}
409
+ )
410
+ save_steps: int = field(
411
+ default=4000, metadata={"help": "Save checkpoint every X updates steps."}
412
+ )
413
+ log_model: bool = field(
414
+ default=False,
415
+ metadata={"help": "Log model to wandb at `save_steps` frequency."},
416
+ )
417
+ log_norm_steps: int = field(
418
+ default=True,
419
+ metadata={"help": "Log parameters and gradients norm at this frequency."},
420
+ )
421
+ log_histogram_steps: int = field(
422
+ default=False,
423
+ metadata={
424
+ "help": "Log parameters and gradients histograms at this frequency. Slows down training."
425
+ },
426
+ )
427
+
428
+ seed_model: int = field(
429
+ default=42,
430
+ metadata={
431
+ "help": "Random seed for the model that will be set at the beginning of training."
432
+ },
433
+ )
434
+
435
+ wandb_entity: Optional[str] = field(
436
+ default=None,
437
+ metadata={"help": "The wandb entity to use (for teams)."},
438
+ )
439
+ wandb_project: str = field(
440
+ default="dalle-mini",
441
+ metadata={"help": "The name of the wandb project."},
442
+ )
443
+ wandb_job_type: str = field(
444
+ default="Seq2Seq",
445
+ metadata={"help": "The name of the wandb job type."},
446
+ )
447
+
448
+ assert_TPU_available: bool = field(
449
+ default=False,
450
+ metadata={"help": "Verify that TPU is not in use."},
451
+ )
452
+
453
+ mp_devices: Optional[int] = field(
454
+ default=1,
455
+ metadata={
456
+ "help": "Number of devices required for model parallelism. The other dimension of available devices is used for data parallelism."
457
+ },
458
+ )
459
+
460
+ dp_devices: int = field(init=False)
461
+
462
+ def __post_init__(self):
463
+ if self.assert_TPU_available:
464
+ assert (
465
+ jax.local_device_count() == 8
466
+ ), "TPUs in use, please check running processes"
467
+ if self.output_dir.startswith("gs://"):
468
+ assert (
469
+ storage is not None
470
+ ), 'Could not find google.storage. Install with "pip install google-cloud-storage"'
471
+ assert self.optim in [
472
+ "distributed_shampoo",
473
+ "adam",
474
+ "adafactor",
475
+ ], f"Selected optimizer not supported: {self.optim}"
476
+ assert self.graft_type in [
477
+ "rmsprop_normalized",
478
+ "rmsprop",
479
+ "adagrad",
480
+ "adagrad_normalized",
481
+ "sgd",
482
+ "sqrt_n",
483
+ ], f"Selected graft type not supported: {self.graft_type}"
484
+ assert self.lr_decay in [
485
+ None,
486
+ "linear",
487
+ "exponential",
488
+ ], f"Selected learning rate decay not supported: {self.lr_decay}"
489
+ if self.per_device_eval_batch_size is None:
490
+ self.per_device_eval_batch_size = self.per_device_train_batch_size
491
+ if self.log_norm_steps is True:
492
+ self.log_norm_steps = self.logging_steps
493
+ if (
494
+ os.path.exists(self.output_dir)
495
+ and os.listdir(self.output_dir)
496
+ and self.do_train
497
+ and not self.overwrite_output_dir
498
+ ):
499
+ raise ValueError(
500
+ f"Output directory ({self.output_dir}) already exists and is not empty."
501
+ "Use --overwrite_output_dir to overcome."
502
+ )
503
+ assert (
504
+ self.mp_devices > 0
505
+ ), f"Number of devices for model parallelism must be > 0"
506
+ assert (
507
+ jax.device_count() % self.mp_devices == 0
508
+ ), f"Number of available devices ({jax.device_count()} must be divisible by number of devices used for model parallelism ({self.mp_devices})."
509
+ self.dp_devices = jax.device_count() // self.mp_devices
510
+
511
+
512
+ class TrainState(train_state.TrainState):
513
+ dropout_rng: jnp.ndarray = None
514
+ epoch: int = 0
515
+ train_time: float = 0.0 # total time the model trained
516
+ train_samples: int = 0 # number of samples seen
517
+
518
+
519
+ def main():
520
+ # See all possible arguments by passing the --help flag to this script.
521
+ parser = HfArgumentParser(
522
+ (ModelArguments, DataTrainingArguments, TrainingArguments)
523
+ )
524
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
525
+ # If we pass only one argument to the script and it's the path to a json file,
526
+ # let's parse it to get our arguments.
527
+ model_args, data_args, training_args = parser.parse_json_file(
528
+ json_file=os.path.abspath(sys.argv[1])
529
+ )
530
+ else:
531
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
532
+
533
+ # Make one log on every process with the configuration for debugging.
534
+ logging.basicConfig(
535
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
536
+ datefmt="%m/%d/%Y %H:%M:%S",
537
+ level=logging.INFO,
538
+ )
539
+ # Setup logging, we only want one process per machine to log things on the screen.
540
+ logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
541
+ if jax.process_index() == 0:
542
+ datasets.utils.logging.set_verbosity_warning()
543
+ transformers.utils.logging.set_verbosity_info()
544
+ else:
545
+ datasets.utils.logging.set_verbosity_error()
546
+ transformers.utils.logging.set_verbosity_error()
547
+
548
+ # Set the verbosity to info of the Transformers logger (on main process only):
549
+ logger.info(f"Training/evaluation parameters {training_args}")
550
+
551
+ # Load dataset
552
+ dataset = Dataset(
553
+ **asdict(data_args),
554
+ do_train=training_args.do_train,
555
+ do_eval=training_args.do_eval,
556
+ )
557
+
558
+ logger.info(f"Local TPUs: {jax.local_device_count()}")
559
+ logger.info(f"Global TPUs: {jax.device_count()}")
560
+
561
+ # Set up wandb run
562
+ if jax.process_index() == 0:
563
+ wandb.init(
564
+ entity=training_args.wandb_entity,
565
+ project=training_args.wandb_project,
566
+ job_type=training_args.wandb_job_type,
567
+ config=parser.parse_args(),
568
+ )
569
+
570
+ # Set up our new model config
571
+ if model_args.config_name:
572
+ config = DalleBartConfig.from_pretrained(model_args.config_name)
573
+ config.gradient_checkpointing = training_args.gradient_checkpointing
574
+ else:
575
+ config = None
576
+
577
+ # Load or create new model
578
+ if model_args.model_name_or_path:
579
+ model = DalleBart.from_pretrained(
580
+ model_args.model_name_or_path,
581
+ config=config,
582
+ seed=training_args.seed_model,
583
+ dtype=getattr(jnp, model_args.dtype),
584
+ abstract_init=True, # we overwrite them with loaded checkpoint
585
+ gradient_checkpointing=training_args.gradient_checkpointing,
586
+ )
587
+ else:
588
+ model = DalleBart(
589
+ config,
590
+ seed=training_args.seed_model,
591
+ dtype=getattr(jnp, model_args.dtype),
592
+ abstract_init=True,
593
+ )
594
+
595
+ # get model metadata
596
+ model_metadata = model_args.get_metadata()
597
+
598
+ # get PartitionSpec for model params (required to be a dict)
599
+ param_spec = set_partitions(model.params)
600
+
601
+ # convert params to frozen dict
602
+ model._params = freeze(model.params)
603
+
604
+ # Load tokenizer
605
+ tokenizer = DalleBartTokenizer.from_pretrained(
606
+ model_args.tokenizer_name, use_fast=True
607
+ )
608
+
609
+ # Preprocessing the datasets.
610
+ # We need to normalize and tokenize inputs and targets.
611
+ dataset.preprocess(tokenizer=tokenizer, config=model.config)
612
+
613
+ # Initialize our training
614
+ dropout_rng = jax.random.PRNGKey(training_args.seed_model)
615
+
616
+ # Store some constant
617
+ num_epochs = training_args.num_train_epochs
618
+ # batch size
619
+ batch_size_per_node_per_grad_step = (
620
+ training_args.per_device_train_batch_size
621
+ * jax.local_device_count()
622
+ // training_args.mp_devices
623
+ )
624
+ batch_size_per_node = (
625
+ batch_size_per_node_per_grad_step * training_args.gradient_accumulation_steps
626
+ )
627
+ batch_size_per_step = batch_size_per_node * jax.process_count()
628
+ eval_batch_size_per_node = (
629
+ training_args.per_device_eval_batch_size
630
+ * jax.local_device_count()
631
+ // training_args.mp_devices
632
+ )
633
+ eval_batch_size_per_step = eval_batch_size_per_node * jax.process_count()
634
+ len_train_dataset, len_eval_dataset = dataset.length
635
+ steps_per_epoch = (
636
+ len_train_dataset // batch_size_per_node
637
+ if len_train_dataset is not None
638
+ else None
639
+ )
640
+ num_train_steps = (
641
+ steps_per_epoch * num_epochs if steps_per_epoch is not None else None
642
+ )
643
+ num_params = model.num_params
644
+
645
+ logger.info("***** Running training *****")
646
+ logger.info(f" Num examples = {len_train_dataset}")
647
+ logger.info(f" Num Epochs = {num_epochs}")
648
+ logger.info(
649
+ f" Batch size per dp device = {training_args.per_device_train_batch_size}"
650
+ )
651
+ logger.info(f" Number of devices = {jax.device_count()}")
652
+ logger.info(
653
+ f" Gradient accumulation steps = {training_args.gradient_accumulation_steps}"
654
+ )
655
+ logger.info(f" Batch size per update = {batch_size_per_step}")
656
+ logger.info(f" Model parameters = {num_params:,}")
657
+
658
+ # set up wandb run
659
+ if jax.process_index() == 0:
660
+ # set default x-axis as 'train/step'
661
+ wandb.define_metric("*", step_metric="train/step")
662
+
663
+ # add interesting config parameters
664
+ wandb.config.update(
665
+ {
666
+ "len_train_dataset": len_train_dataset,
667
+ "len_eval_dataset": len_eval_dataset,
668
+ "batch_size_per_step": batch_size_per_step,
669
+ "num_params": num_params,
670
+ "model_config": model.config.to_dict(),
671
+ "num_devices": jax.device_count(),
672
+ "versions": {
673
+ "jax": jax.__version__,
674
+ "jaxlib": jaxlib.__version__,
675
+ "flax": flax.__version__,
676
+ "transformers": transformers.__version__,
677
+ "datasets": datasets.__version__,
678
+ "wandb": wandb.__version__,
679
+ "dalle_mini": dalle_mini.__version__,
680
+ },
681
+ }
682
+ )
683
+
684
+ # Create learning rate schedule
685
+ def create_learning_rate_fn() -> Callable[[int], jnp.array]:
686
+ """Create the learning rate function."""
687
+ warmup_fn = optax.linear_schedule(
688
+ init_value=0.0,
689
+ end_value=training_args.learning_rate,
690
+ transition_steps=training_args.warmup_steps + 1, # ensure not 0
691
+ )
692
+ # offset step when resuming
693
+ if model_metadata.get("step", 0):
694
+ warmup_fn = optax.join_schedules(
695
+ schedules=[optax.constant_schedule(0.0), warmup_fn],
696
+ boundaries=[model_metadata["step"]],
697
+ )
698
+ if training_args.lr_decay is None:
699
+ return warmup_fn
700
+ elif training_args.lr_decay == "linear":
701
+ assert (
702
+ num_train_steps is not None
703
+ ), "linear decay requires knowing the dataset length"
704
+ decay_fn = optax.linear_schedule(
705
+ init_value=training_args.learning_rate,
706
+ end_value=0,
707
+ transition_steps=num_train_steps - training_args.warmup_steps,
708
+ )
709
+ elif training_args.lr_decay == "exponential":
710
+ decay_fn = optax.exponential_decay(
711
+ init_value=training_args.learning_rate,
712
+ transition_steps=training_args.lr_transition_steps,
713
+ decay_rate=training_args.lr_decay_rate,
714
+ staircase=training_args.lr_staircase,
715
+ )
716
+ schedule_fn = optax.join_schedules(
717
+ schedules=[warmup_fn, decay_fn],
718
+ boundaries=[model_metadata.get("step", 0) + training_args.warmup_steps],
719
+ )
720
+ return schedule_fn
721
+
722
+ learning_rate_fn = create_learning_rate_fn()
723
+
724
+ # create adam optimizer
725
+ if training_args.optim == "distributed_shampoo":
726
+ # parameters from https://github.com/tensorflow/lingvo/blob/03ee9d7cd50764b0424c7c863733c91fc0b053ec/lingvo/jax/optimizers.py#L729
727
+ graft_type = {
728
+ "sgd": GraftingType.SGD,
729
+ "adagrad": GraftingType.ADAGRAD,
730
+ "rmsprop": GraftingType.RMSPROP,
731
+ "rmsprop_normalized": GraftingType.RMSPROP_NORMALIZED,
732
+ "sqrt_n": GraftingType.SQRT_N,
733
+ "adagrad_normalized": GraftingType.ADAGRAD_NORMALIZED,
734
+ }[training_args.graft_type]
735
+ optimizer = distributed_shampoo(
736
+ learning_rate_fn,
737
+ block_size=training_args.block_size,
738
+ beta1=training_args.beta1,
739
+ beta2=training_args.beta2,
740
+ diagonal_epsilon=1e-10,
741
+ matrix_epsilon=1e-6,
742
+ start_preconditioning_step=max(
743
+ training_args.preconditioning_compute_steps + 1, 101
744
+ ),
745
+ preconditioning_compute_steps=training_args.preconditioning_compute_steps,
746
+ statistics_compute_steps=1,
747
+ best_effort_shape_interpretation=True,
748
+ graft_type=graft_type,
749
+ nesterov=False,
750
+ exponent_override=0,
751
+ statistics_partition_spec=PartitionSpec(None, "dp", None),
752
+ preconditioner_partition_spec=PartitionSpec("dp", None, None),
753
+ num_devices_for_pjit=training_args.dp_devices,
754
+ shard_optimizer_states=True,
755
+ inverse_failure_threshold=0.1,
756
+ moving_average_for_momentum=True,
757
+ skip_preconditioning_dim_size_gt=training_args.skip_preconditioning_dim_size_gt,
758
+ clip_by_scaled_gradient_norm=None,
759
+ precision=jax.lax.Precision.HIGHEST,
760
+ best_effort_memory_usage_reduction=training_args.optim_quantized,
761
+ )
762
+ # get the real optimizer and helper functions
763
+ update_fn = optimizer.update
764
+ optimizer = optimizer.init(model.params)
765
+ opt_fn = NamedTuple("opt_fn", pspec_fn=Any, shape_and_dtype_fn=Any)(
766
+ optimizer.pspec_fn, optimizer.shape_and_dtype_fn
767
+ )
768
+ optimizer = optax.GradientTransformation(optimizer.init_fn, update_fn)
769
+
770
+ elif training_args.optim == "adam":
771
+ optimizer = optax.adamw(
772
+ learning_rate=learning_rate_fn,
773
+ b1=training_args.beta1,
774
+ b2=training_args.beta2,
775
+ eps=training_args.adam_epsilon,
776
+ )
777
+ elif training_args.optim == "adafactor":
778
+ # We use the default parameters here to initialize adafactor,
779
+ # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
780
+ optimizer = optax.adafactor(
781
+ learning_rate=learning_rate_fn,
782
+ clipping_threshold=training_args.max_grad_norm,
783
+ )
784
+
785
+ # get PartitionSpec for optimizer state
786
+ def get_opt_state_spec_and_shape(param_spec):
787
+ # get opt_state shape without actual init
788
+ opt_state_shape = jax.eval_shape(optimizer.init, model.params)
789
+
790
+ if training_args.optim == "adam":
791
+
792
+ def _opt_state_spec_per_leaf(x):
793
+ if isinstance(x, FrozenDict):
794
+ # variables with same structure as params
795
+ return param_spec
796
+ else:
797
+ # other variables such as count
798
+ return None
799
+
800
+ opt_state_spec = jax.tree_map(
801
+ _opt_state_spec_per_leaf,
802
+ opt_state_shape,
803
+ # return None spec for empty elements
804
+ is_leaf=lambda x: isinstance(x, (FrozenDict, optax.EmptyState)),
805
+ )
806
+
807
+ elif training_args.optim == "adafactor":
808
+ # factorized state must be replicated (rank different than params)
809
+ opt_state_spec = None
810
+
811
+ elif training_args.optim == "distributed_shampoo":
812
+ opt_state_spec = opt_fn.pspec_fn(
813
+ params=model.params,
814
+ params_partition_spec=param_spec,
815
+ partition_spec_for_statistics=PartitionSpec(None, "dp", None),
816
+ )
817
+ else:
818
+ raise NotImplementedError
819
+ return opt_state_spec, opt_state_shape
820
+
821
+ opt_state_spec, opt_state_shape = get_opt_state_spec_and_shape(param_spec)
822
+
823
+ # create a mesh
824
+ mesh_shape = (training_args.dp_devices, training_args.mp_devices)
825
+ devices = np.asarray(jax.devices()).reshape(*mesh_shape)
826
+ mesh = maps.Mesh(devices, ("dp", "mp"))
827
+ logger.info(f" Mesh shape: {mesh_shape}")
828
+
829
+ # define state spec
830
+ state_spec = TrainState(
831
+ params=param_spec,
832
+ opt_state=opt_state_spec,
833
+ dropout_rng=None,
834
+ step=None,
835
+ epoch=None,
836
+ train_time=None,
837
+ train_samples=None,
838
+ apply_fn=model.__call__,
839
+ tx=optimizer,
840
+ )
841
+
842
+ # init params if not available yet
843
+ def maybe_init_params(params):
844
+ if model_args.model_name_or_path:
845
+ # model params are correctly loaded
846
+ return params
847
+ else:
848
+ # params have not been initialized yet
849
+ return model.init_weights()
850
+
851
+ with mesh:
852
+ logger.info(" Creating state")
853
+ if not model_args.restore_state:
854
+
855
+ def init_state(params):
856
+ return TrainState.create(
857
+ apply_fn=model.__call__,
858
+ tx=optimizer,
859
+ params=maybe_init_params(params),
860
+ dropout_rng=dropout_rng,
861
+ )
862
+
863
+ state = pjit(
864
+ init_state,
865
+ in_axis_resources=(param_spec,)
866
+ if model_args.model_name_or_path
867
+ else None,
868
+ out_axis_resources=state_spec,
869
+ donate_argnums=(0,),
870
+ )(model.params if model_args.model_name_or_path else None)
871
+
872
+ else:
873
+ # load opt_state
874
+ opt_state = from_bytes(opt_state_shape, model_args.get_opt_state())
875
+
876
+ # restore other attributes
877
+ attr_state = {
878
+ k: model_metadata[k]
879
+ for k in ["step", "epoch", "train_time", "train_samples"]
880
+ }
881
+
882
+ def restore_state(params, opt_state):
883
+ return TrainState(
884
+ apply_fn=model.__call__,
885
+ tx=optimizer,
886
+ params=params,
887
+ opt_state=opt_state,
888
+ dropout_rng=dropout_rng,
889
+ **attr_state,
890
+ )
891
+
892
+ state = pjit(
893
+ restore_state,
894
+ in_axis_resources=(
895
+ param_spec,
896
+ opt_state_spec,
897
+ ),
898
+ out_axis_resources=state_spec,
899
+ donate_argnums=(0, 1),
900
+ )(model.params, opt_state)
901
+
902
+ # remove opt_state from CPU
903
+ del opt_state
904
+
905
+ # free CPU memory
906
+ del model._params, opt_state_spec, opt_state_shape
907
+
908
+ # define batch specs
909
+ batch_spec = PartitionSpec("dp")
910
+ grad_batch_spec = PartitionSpec(None, "dp")
911
+
912
+ # define loss
913
+ def loss_fn(logits, labels):
914
+ loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1]))
915
+ loss = loss.mean()
916
+ return loss
917
+
918
+ # "vmap trick" avoids a crash when mp_devices > 1 (not sure why it happens)
919
+ # lead to better perf: see https://wandb.ai/dalle-mini/dalle-mini/reports/JAX-pmap-vs-pjit--VmlldzoxNDg1ODA2
920
+ use_vmap_trick = True
921
+
922
+ # make grad_param_spec for vmap
923
+ if use_vmap_trick:
924
+ grad_param_spec = jax.tree_map(
925
+ lambda x: PartitionSpec(*("dp",) + (x if x is not None else (None,))),
926
+ param_spec,
927
+ )
928
+
929
+ # Define gradient update step fn
930
+ def train_step(state, batch, train_time):
931
+
932
+ # get a minibatch (one gradient accumulation slice)
933
+ def get_minibatch(batch, grad_idx):
934
+ return jax.tree_map(
935
+ lambda x: jax.lax.dynamic_index_in_dim(x, grad_idx, keepdims=False),
936
+ batch,
937
+ )
938
+
939
+ def compute_loss(params, minibatch, dropout_rng):
940
+ # minibatch has dim (batch_size, ...)
941
+ minibatch, labels = minibatch.pop("labels")
942
+ logits = state.apply_fn(
943
+ **minibatch, params=params, dropout_rng=dropout_rng, train=True
944
+ )[0]
945
+ return loss_fn(logits, labels)
946
+
947
+ grad_fn = jax.value_and_grad(compute_loss)
948
+
949
+ def loss_and_grad(grad_idx, dropout_rng):
950
+ # minibatch at grad_idx for gradient accumulation (None otherwise)
951
+ minibatch = (
952
+ get_minibatch(batch, grad_idx) if grad_idx is not None else batch
953
+ )
954
+ # ensure it is sharded properly
955
+ minibatch = with_sharding_constraint(minibatch, batch_spec)
956
+ # only 1 single rng per grad step, let us handle larger batch size (not sure why)
957
+ dropout_rng, _ = jax.random.split(dropout_rng)
958
+
959
+ if use_vmap_trick:
960
+ # "vmap trick", calculate loss and grads independently per dp_device
961
+ loss, grads = jax.vmap(
962
+ grad_fn, in_axes=(None, 0, None), out_axes=(0, 0)
963
+ )(state.params, minibatch, dropout_rng)
964
+ # ensure they are sharded correctly
965
+ loss = with_sharding_constraint(loss, batch_spec)
966
+ grads = with_sharding_constraint(grads, grad_param_spec)
967
+ # average across all devices
968
+ # Note: we could average per device only after gradient accumulation, right before params update
969
+ loss, grads = jax.tree_map(lambda x: jnp.mean(x, axis=0), (loss, grads))
970
+ else:
971
+ # "vmap trick" does not work in multi-hosts and requires too much hbm
972
+ loss, grads = grad_fn(state.params, minibatch, dropout_rng)
973
+ # ensure grads are sharded
974
+ grads = with_sharding_constraint(grads, param_spec)
975
+ # return loss and grads
976
+ return loss, grads, dropout_rng
977
+
978
+ if training_args.gradient_accumulation_steps == 1:
979
+ loss, grads, dropout_rng = loss_and_grad(None, state.dropout_rng)
980
+ else:
981
+ # create initial state for cumul_minibatch_step loop
982
+ init_minibatch_step = (
983
+ 0.0,
984
+ with_sharding_constraint(
985
+ jax.tree_map(jnp.zeros_like, state.params), param_spec
986
+ ),
987
+ state.dropout_rng,
988
+ )
989
+
990
+ # accumulate gradients
991
+ def cumul_minibatch_step(grad_idx, cumul_loss_grad_dropout):
992
+ cumul_loss, cumul_grads, dropout_rng = cumul_loss_grad_dropout
993
+ loss, grads, dropout_rng = loss_and_grad(grad_idx, dropout_rng)
994
+ cumul_loss, cumul_grads = jax.tree_map(
995
+ jnp.add, (cumul_loss, cumul_grads), (loss, grads)
996
+ )
997
+ cumul_grads = with_sharding_constraint(cumul_grads, param_spec)
998
+ return cumul_loss, cumul_grads, dropout_rng
999
+
1000
+ # loop over gradients
1001
+ loss, grads, dropout_rng = jax.lax.fori_loop(
1002
+ 0,
1003
+ training_args.gradient_accumulation_steps,
1004
+ cumul_minibatch_step,
1005
+ init_minibatch_step,
1006
+ )
1007
+ grads = with_sharding_constraint(grads, param_spec)
1008
+ # sum -> mean
1009
+ loss, grads = jax.tree_map(
1010
+ lambda x: x / training_args.gradient_accumulation_steps, (loss, grads)
1011
+ )
1012
+
1013
+ grads = with_sharding_constraint(grads, param_spec)
1014
+
1015
+ # update state
1016
+ state = state.apply_gradients(
1017
+ grads=grads,
1018
+ dropout_rng=dropout_rng,
1019
+ train_time=train_time,
1020
+ train_samples=state.train_samples + batch_size_per_step,
1021
+ )
1022
+
1023
+ metrics = {
1024
+ "loss": loss,
1025
+ "learning_rate": learning_rate_fn(state.step),
1026
+ }
1027
+
1028
+ def maybe_fn(fn, val, zeros, freq):
1029
+ """Call fn only if it is a logging step"""
1030
+ return jax.lax.cond(
1031
+ state.step % freq == 0,
1032
+ fn,
1033
+ lambda _: zeros,
1034
+ val,
1035
+ )
1036
+
1037
+ if training_args.log_norm_steps:
1038
+ zeros_norm = jax.tree_map(lambda _: jnp.float32(0), state.params)
1039
+
1040
+ def norm(val):
1041
+ return jax.tree_map(lambda x: jnp.linalg.norm(x), val)
1042
+
1043
+ gradients_norm = maybe_fn(
1044
+ norm, grads, zeros_norm, training_args.log_norm_steps
1045
+ )
1046
+ params_norm = maybe_fn(
1047
+ norm, state.params, zeros_norm, training_args.log_norm_steps
1048
+ )
1049
+
1050
+ metrics.update(
1051
+ {
1052
+ "gradients_norm": gradients_norm,
1053
+ "params_norm": params_norm,
1054
+ }
1055
+ )
1056
+
1057
+ if training_args.log_histogram_steps:
1058
+ zeros_hist = jax.tree_map(
1059
+ lambda _: jnp.histogram(jnp.zeros(1), density=True), state.params
1060
+ )
1061
+
1062
+ def histogram(val):
1063
+ return jax.tree_map(lambda x: jnp.histogram(x, density=True), val)
1064
+
1065
+ gradients_hist = maybe_fn(
1066
+ histogram, grads, zeros_hist, training_args.log_histogram_steps
1067
+ )
1068
+ params_hist = maybe_fn(
1069
+ histogram, state.params, zeros_hist, training_args.log_histogram_steps
1070
+ )
1071
+
1072
+ metrics.update(
1073
+ {
1074
+ "params_hist": params_hist,
1075
+ "gradients_hist": gradients_hist,
1076
+ }
1077
+ )
1078
+
1079
+ return state, metrics
1080
+
1081
+ # Define eval fn
1082
+ def eval_step(state, batch):
1083
+ def compute_eval_loss(batch):
1084
+ batch, labels = batch.pop("labels")
1085
+ logits = model(**batch, params=state.params, train=False)[0]
1086
+ return loss_fn(logits, labels)
1087
+
1088
+ if use_vmap_trick:
1089
+ loss = jax.vmap(compute_eval_loss)(batch)
1090
+ # ensure they are sharded correctly
1091
+ loss = with_sharding_constraint(loss, batch_spec)
1092
+ # average across all devices
1093
+ loss = jnp.mean(loss)
1094
+ else:
1095
+ loss = compute_eval_loss(batch)
1096
+
1097
+ return loss
1098
+
1099
+ # Create parallel version of the train and eval step
1100
+ p_train_step = pjit(
1101
+ train_step,
1102
+ in_axis_resources=(
1103
+ state_spec,
1104
+ grad_batch_spec
1105
+ if training_args.gradient_accumulation_steps > 1
1106
+ else batch_spec,
1107
+ None,
1108
+ ),
1109
+ out_axis_resources=(state_spec, None),
1110
+ donate_argnums=(0,),
1111
+ )
1112
+ p_eval_step = pjit(
1113
+ eval_step,
1114
+ in_axis_resources=(state_spec, batch_spec),
1115
+ out_axis_resources=None,
1116
+ )
1117
+
1118
+ # define metrics logger
1119
+ class MetricsLogger:
1120
+ def __init__(self, step):
1121
+ # keep state
1122
+ self.state_dict = {}
1123
+ # estimate speed
1124
+ self.step = step
1125
+ self.time = time.perf_counter()
1126
+ self.offset_time = 0.0
1127
+
1128
+ def update_state_metrics(self, state):
1129
+ """Update internal state metrics (logged at each call to be used as x-axis)"""
1130
+ self.state_dict = {
1131
+ f'train/{k.split("_")[-1]}': state[k]
1132
+ for k in ["step", "epoch", "train_time", "train_samples"]
1133
+ }
1134
+ # timing metrics
1135
+ new_step = int(state["step"])
1136
+ new_time = time.perf_counter()
1137
+ if new_step > self.step:
1138
+ # remove time for eval & save
1139
+ delta_time = new_time - self.time - self.offset_time
1140
+ self.offset_time = 0
1141
+ time_per_step = delta_time / (new_step - self.step)
1142
+ self.step = new_step
1143
+ self.time = new_time
1144
+ self.log_time("train_per_step", time_per_step, offset=False)
1145
+ self.log_time("train_per_log", delta_time, offset=False)
1146
+
1147
+ def log_time(self, key, duration, offset=True):
1148
+ wandb.log({f"time/{key}": duration, **self.state_dict})
1149
+ if offset:
1150
+ self.offset_time += duration
1151
+
1152
+ def log(self, metrics, prefix=None):
1153
+ if jax.process_index() == 0:
1154
+ log_metrics = {}
1155
+ for k, v in metrics.items():
1156
+ if "_norm" in k:
1157
+ if self.step % training_args.log_norm_steps == 0:
1158
+ log_metrics[f"{k}/"] = unfreeze(v)
1159
+ elif "_hist" in k:
1160
+ if self.step % training_args.log_histogram_steps == 0:
1161
+ v = jax.tree_map(lambda x: jax.device_get(x), unfreeze(v))
1162
+ v = jax.tree_map(
1163
+ lambda x: wandb.Histogram(np_histogram=x),
1164
+ v,
1165
+ is_leaf=lambda x: isinstance(x, tuple),
1166
+ )
1167
+ log_metrics[f"{k}/"] = v
1168
+ else:
1169
+ if prefix is not None:
1170
+ k = f"{prefix}/{k}"
1171
+ log_metrics[k] = v
1172
+ wandb.log({**log_metrics, **self.state_dict})
1173
+
1174
+ # keep local copy of state
1175
+ local_state = {
1176
+ k: jax.device_get(getattr(state, k)).item()
1177
+ for k in ["step", "epoch", "train_time", "train_samples"]
1178
+ }
1179
+ # init variables
1180
+ start_time = time.perf_counter() - local_state["train_time"]
1181
+ train_metrics = None
1182
+ metrics_logger = MetricsLogger(local_state["step"])
1183
+ epochs = tqdm(
1184
+ range(local_state["epoch"], num_epochs),
1185
+ desc=f"Epoch ... (1/{num_epochs})",
1186
+ position=0,
1187
+ disable=jax.process_index() > 0,
1188
+ )
1189
+
1190
+ def run_evaluation():
1191
+ # ======================== Evaluating ==============================
1192
+ if training_args.do_eval:
1193
+ start_eval_time = time.perf_counter()
1194
+ eval_loader = dataset.dataloader("eval", eval_batch_size_per_step)
1195
+ eval_steps = (
1196
+ len_eval_dataset // eval_batch_size_per_step
1197
+ if len_eval_dataset is not None
1198
+ else None
1199
+ )
1200
+ eval_loss = []
1201
+ for batch in tqdm(
1202
+ eval_loader,
1203
+ desc="Evaluating...",
1204
+ position=2,
1205
+ leave=False,
1206
+ total=eval_steps,
1207
+ disable=jax.process_index() > 0,
1208
+ ):
1209
+ # need to keep only eval_batch_size_per_node items relevant to the node
1210
+ batch = jax.tree_map(
1211
+ lambda x: x.reshape(
1212
+ (jax.process_count(), eval_batch_size_per_node) + x.shape[1:]
1213
+ ),
1214
+ batch,
1215
+ )
1216
+ batch = jax.tree_map(lambda x: x[jax.process_index()], batch)
1217
+
1218
+ # add dp dimension when using "vmap trick"
1219
+ if use_vmap_trick:
1220
+ bs_shape = (
1221
+ jax.local_device_count() // training_args.mp_devices,
1222
+ training_args.per_device_eval_batch_size,
1223
+ )
1224
+ batch = jax.tree_map(
1225
+ lambda x: x.reshape(bs_shape + x.shape[1:]), batch
1226
+ )
1227
+
1228
+ # freeze batch to pass safely to jax transforms
1229
+ batch = freeze(batch)
1230
+ # accumulate losses async
1231
+ eval_loss.append(p_eval_step(state, batch))
1232
+
1233
+ # get the mean of the loss
1234
+ eval_loss = jnp.stack(eval_loss)
1235
+ eval_loss = jnp.mean(eval_loss)
1236
+ eval_metrics = {"loss": eval_loss}
1237
+
1238
+ # log metrics
1239
+ metrics_logger.log(eval_metrics, prefix="eval")
1240
+ metrics_logger.log_time("eval", time.perf_counter() - start_eval_time)
1241
+
1242
+ # Print metrics and update progress bar
1243
+ desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']})"
1244
+ epochs.write(desc)
1245
+ epochs.desc = desc
1246
+
1247
+ return eval_metrics
1248
+
1249
+ def run_save_model(state, eval_metrics=None):
1250
+ if jax.process_index() == 0:
1251
+
1252
+ start_save_time = time.perf_counter()
1253
+ output_dir = training_args.output_dir
1254
+ use_bucket = output_dir.startswith("gs://")
1255
+ if use_bucket:
1256
+ bucket_path = Path(output_dir[5:]) / wandb.run.id / f"step_{state.step}"
1257
+ bucket, dir_path = str(bucket_path).split("/", 1)
1258
+ tmp_dir = tempfile.TemporaryDirectory()
1259
+ output_dir = tmp_dir.name
1260
+
1261
+ # save model
1262
+ params = jax.device_get(state.params)
1263
+ model.save_pretrained(
1264
+ output_dir,
1265
+ params=params,
1266
+ )
1267
+
1268
+ # save tokenizer
1269
+ tokenizer.save_pretrained(output_dir)
1270
+
1271
+ # copy to bucket
1272
+ if use_bucket:
1273
+ client = storage.Client()
1274
+ bucket = client.bucket(bucket)
1275
+ for filename in Path(output_dir).glob("*"):
1276
+ blob_name = str(Path(dir_path) / "model" / filename.name)
1277
+ blob = bucket.blob(blob_name)
1278
+ blob.upload_from_filename(str(filename))
1279
+ tmp_dir.cleanup()
1280
+
1281
+ # save state
1282
+ opt_state = jax.device_get(state.opt_state)
1283
+ if use_bucket:
1284
+ blob_name = str(Path(dir_path) / "state" / "opt_state.msgpack")
1285
+ blob = bucket.blob(blob_name)
1286
+ blob.upload_from_file(io.BytesIO(to_bytes(opt_state)))
1287
+ else:
1288
+ with (Path(output_dir) / "opt_state.msgpack").open("wb") as f:
1289
+ f.write(to_bytes(opt_state))
1290
+
1291
+ # save to W&B
1292
+ if training_args.log_model:
1293
+ # save some space
1294
+ c = wandb.wandb_sdk.wandb_artifacts.get_artifacts_cache()
1295
+ c.cleanup(wandb.util.from_human_size("20GB"))
1296
+
1297
+ metadata = {
1298
+ k: jax.device_get(getattr(state, k)).item()
1299
+ for k in ["step", "epoch", "train_time", "train_samples"]
1300
+ }
1301
+ metadata["num_params"] = num_params
1302
+ if eval_metrics is not None:
1303
+ metadata["eval"] = eval_metrics
1304
+
1305
+ # create model artifact
1306
+ if use_bucket:
1307
+ metadata["bucket_path"] = f"gs://{bucket_path}/model"
1308
+ artifact = wandb.Artifact(
1309
+ name=f"model-{wandb.run.id}",
1310
+ type="DalleBart_model",
1311
+ metadata=metadata,
1312
+ )
1313
+ if use_bucket:
1314
+ artifact.add_reference(metadata["bucket_path"])
1315
+ else:
1316
+ for filename in [
1317
+ "config.json",
1318
+ "flax_model.msgpack",
1319
+ "merges.txt",
1320
+ "special_tokens_map.json",
1321
+ "tokenizer.json",
1322
+ "tokenizer_config.json",
1323
+ "vocab.json",
1324
+ ]:
1325
+ artifact.add_file(
1326
+ f"{Path(training_args.output_dir) / filename}"
1327
+ )
1328
+ wandb.run.log_artifact(artifact)
1329
+
1330
+ # create state artifact
1331
+ if use_bucket:
1332
+ metadata["bucket_path"] = f"gs://{bucket_path}/state"
1333
+ artifact_state = wandb.Artifact(
1334
+ name=f"state-{wandb.run.id}",
1335
+ type="DalleBart_state",
1336
+ metadata=metadata,
1337
+ )
1338
+ if use_bucket:
1339
+ artifact_state.add_reference(metadata["bucket_path"])
1340
+ else:
1341
+ artifact_state.add_file(
1342
+ f"{Path(training_args.output_dir) / 'opt_state.msgpack'}"
1343
+ )
1344
+ wandb.run.log_artifact(artifact_state)
1345
+ metrics_logger.log_time("save_model", time.perf_counter() - start_save_time)
1346
+
1347
+ logger.info(" Ready to start training")
1348
+ with mesh:
1349
+ for epoch in epochs:
1350
+ state.replace(epoch=epoch)
1351
+ local_state["epoch"] = epoch
1352
+ # ======================== Training ================================
1353
+ metrics_logger.update_state_metrics(local_state)
1354
+ metrics_logger.log({})
1355
+
1356
+ # Generate an epoch by shuffling sampling indices from the train dataset
1357
+ train_loader = dataset.dataloader(
1358
+ "train",
1359
+ batch_size_per_node,
1360
+ epoch,
1361
+ )
1362
+ # train
1363
+ for batch in tqdm(
1364
+ train_loader,
1365
+ desc="Training...",
1366
+ position=1,
1367
+ leave=False,
1368
+ total=steps_per_epoch,
1369
+ disable=jax.process_index() > 0,
1370
+ ):
1371
+ # calculate delta time (we have a lag of one step but it's ok)
1372
+ train_time = time.perf_counter() - start_time
1373
+
1374
+ # set correct shape to batch
1375
+ # - add grad_step dim if gradient_accumulation_steps > 1
1376
+ # - split per dp device if not multi-host for vmap trick (does not work in multi-host)
1377
+ bs_shape = (
1378
+ (batch_size_per_node_per_grad_step,)
1379
+ if not use_vmap_trick
1380
+ else (
1381
+ jax.local_device_count()
1382
+ // training_args.mp_devices, # local dp devices
1383
+ training_args.per_device_train_batch_size,
1384
+ )
1385
+ )
1386
+ if training_args.gradient_accumulation_steps > 1:
1387
+ # reshape data into (gradient_accumulation_steps, batch_per_node, ...)
1388
+ # to avoid any data redistribution when sharding
1389
+ bs_shape = (training_args.gradient_accumulation_steps,) + bs_shape
1390
+
1391
+ # reshape batch
1392
+ batch = jax.tree_map(
1393
+ lambda x: x.reshape(bs_shape + x.shape[1:]),
1394
+ batch,
1395
+ )
1396
+ # freeze batch to pass safely to jax transforms
1397
+ batch = freeze(batch)
1398
+
1399
+ # train step
1400
+ state, train_metrics = p_train_step(state, batch, train_time)
1401
+ local_state["step"] += 1
1402
+ local_state["train_time"] = train_time
1403
+ local_state["train_samples"] += batch_size_per_step
1404
+
1405
+ if (
1406
+ local_state["step"] % training_args.logging_steps == 0
1407
+ and jax.process_index() == 0
1408
+ ):
1409
+ metrics_logger.update_state_metrics(local_state)
1410
+ metrics_logger.log(train_metrics, prefix="train")
1411
+
1412
+ eval_metrics = None
1413
+ if local_state["step"] % training_args.eval_steps == 0:
1414
+ eval_metrics = run_evaluation()
1415
+
1416
+ if local_state["step"] % training_args.save_steps == 0:
1417
+ run_save_model(state, eval_metrics)
1418
+
1419
+ # log final train metrics
1420
+ if train_metrics is not None:
1421
+ metrics_logger.update_state_metrics(state)
1422
+ metrics_logger.log(train_metrics, prefix="train")
1423
+
1424
+ epochs.write(
1425
+ f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metrics['loss']}, Learning Rate: {train_metrics['learning_rate']})"
1426
+ )
1427
+
1428
+ # Final evaluation
1429
+ eval_metrics = run_evaluation()
1430
+
1431
+ # save checkpoint after each epoch
1432
+ run_save_model(state, eval_metrics)
1433
+
1434
+
1435
+ if __name__ == "__main__":
1436
+ main()