File size: 7,915 Bytes
44189a1
0567627
c12e34c
b7ae821
c12e34c
b7ae821
17eeb1a
b7ae821
a9377e4
b7ae821
ec60737
a85f402
ec60737
dc78df8
a85f402
 
 
dc78df8
a9377e4
 
a85f402
ec60737
afe7cc3
ec60737
 
 
 
 
 
 
afe7cc3
0a17f2b
 
3e8f9ec
17eeb1a
afe7cc3
a85f402
 
 
afe7cc3
17eeb1a
284af32
0567627
 
 
 
 
 
 
 
 
 
 
 
 
a9377e4
0567627
7d32b39
17eeb1a
3e8f9ec
 
 
0567627
 
afe7cc3
0567627
ec60737
0567627
 
 
 
 
 
 
 
 
 
afe7cc3
17eeb1a
7d32b39
 
dc78df8
7d32b39
 
8df521f
 
17eeb1a
 
afe7cc3
17eeb1a
3e8f9ec
afe7cc3
17eeb1a
 
 
afe7cc3
0567627
 
afe7cc3
a85f402
afe7cc3
8df521f
 
 
afe7cc3
7d32b39
0567627
a9377e4
7d32b39
 
 
0567627
7d32b39
3e8f9ec
7d32b39
0567627
 
7d32b39
 
0567627
7d32b39
 
afe7cc3
8df521f
afe7cc3
8df521f
 
 
 
afe7cc3
0567627
8df521f
 
afe7cc3
8df521f
0567627
3e8f9ec
8df521f
 
3e8f9ec
0567627
8e07e41
8df521f
0567627
afe7cc3
8df521f
 
 
afe7cc3
8df521f
 
afe7cc3
8df521f
 
afe7cc3
17eeb1a
a85f402
17eeb1a
a85f402
173c7e2
6a4fc34
 
0567627
7d32b39
17eeb1a
 
 
 
8324267
7d32b39
17eeb1a
 
 
 
 
48a87fd
8df521f
17eeb1a
afe7cc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17eeb1a
dc78df8
09e9f28
b7ae821
17eeb1a
 
 
 
 
afe7cc3
09e9f28
 
a85f402
 
 
 
afe7cc3
09e9f28
a85f402
17eeb1a
 
 
afe7cc3
a85f402
 
7d32b39
a85f402
 
17eeb1a
 
44189a1
17eeb1a
0567627
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import gradio as gr
import torch
import os
import tempfile
import shutil
import time
import ffmpeg
import numpy as np
from PIL import Image
import moviepy.editor as mp
from infer import lotus, load_models, pipe_g, pipe_d  # Import the global models
import logging
import spaces  # Import the spaces module for ZeroGPU

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Device will be set inside GPU-decorated functions
device = 'cuda'  # Use 'cuda' as placeholder

# Load models once inside a GPU context
task_name = 'depth'

@spaces.GPU
def initialize_models():
    load_models(task_name, device)

# Call the function to load models
initialize_models()

# Preprocess the video to adjust frame rate
def preprocess_video(video_path, target_fps=24):
    """Preprocess the video to adjust its frame rate."""
    video = mp.VideoFileClip(video_path)

    # Adjust FPS if target_fps is specified
    if target_fps > 0:
        video = video.set_fps(target_fps)

    return video

# Resize image while preserving aspect ratio and adding padding
def resize_and_pad(image, target_size):
    """Resize and pad an image to the target size while preserving aspect ratio."""
    # Calculate the new size preserving aspect ratio
    image.thumbnail(target_size, Image.LANCZOS)

    # Create a new image with the target size and black background
    new_image = Image.new("RGB", target_size)
    new_image.paste(
        image, ((target_size[0] - image.width) // 2, (target_size[1] - image.height) // 2)
    )
    return new_image

@spaces.GPU
def process_frame(frame, seed=0, target_size=(512, 512)):
    """Process a single frame and return depth map."""
    try:
        # Convert frame to PIL Image
        image = Image.fromarray(frame).convert('RGB')

        # Resize and pad image
        input_image = resize_and_pad(image, target_size)

        # Run inference
        depth_map = lotus(input_image, 'depth', seed, device)

        # Crop the output depth map back to original image size
        width, height = image.size
        left = (target_size[0] - width) // 2
        top = (target_size[1] - height) // 2
        right = left + width
        bottom = top + height
        depth_map_cropped = depth_map.crop((left, top, right, bottom))

        return depth_map_cropped

    except Exception as e:
        logger.error(f"Error processing frame: {e}")
        return None

def process_video(video_path, fps=0, seed=0):
    """Process video frames individually and generate depth maps."""
    # Create a persistent temporary directory
    temp_dir = tempfile.mkdtemp()
    try:
        start_time = time.time()

        # Preprocess the video
        video = preprocess_video(video_path, target_fps=fps)

        # Use original video FPS if not specified
        if fps == 0:
            fps = video.fps

        frames = list(video.iter_frames())
        total_frames = len(frames)

        logger.info(f"Processing {total_frames} frames at {fps} FPS...")

        # Create directory for frame sequence and outputs
        frames_dir = os.path.join(temp_dir, "frames")
        os.makedirs(frames_dir, exist_ok=True)

        # Process frames individually
        for i, frame in enumerate(frames):
            # Process each frame with GPU allocation
            depth_map = process_frame(frame, seed)

            if depth_map is not None:
                # Save frame
                frame_path = os.path.join(frames_dir, f"frame_{i:06d}.png")
                depth_map.save(frame_path, format='PNG', compress_level=0)

                # Update live preview every 10% progress
                if i % max(1, total_frames // 10) == 0:
                    elapsed_time = time.time() - start_time
                    progress = (i / total_frames) * 100
                    yield depth_map, None, None, f"Processed {i}/{total_frames} frames... ({progress:.2f}%) Elapsed: {elapsed_time:.2f}s"
            else:
                logger.error(f"Error processing frame {i}")

        logger.info("Creating output files...")

        # Create ZIP of frame sequence
        zip_filename = f"depth_frames_{int(time.time())}.zip"
        zip_path = os.path.join(temp_dir, zip_filename)
        shutil.make_archive(zip_path[:-4], 'zip', frames_dir)

        # Create MP4 video
        video_filename = f"depth_video_{int(time.time())}.mp4"
        output_video_path = os.path.join(temp_dir, video_filename)

        try:
            # FFmpeg settings for high-quality MP4
            input_pattern = os.path.join(frames_dir, 'frame_%06d.png')
            (
                ffmpeg
                .input(input_pattern, pattern_type='sequence', framerate=fps)
                .output(output_video_path, vcodec='libx264', pix_fmt='yuv420p', crf=17, preset='slow')
                .run(overwrite_output=True, quiet=True)
            )
            logger.info("MP4 video created successfully!")

        except ffmpeg.Error as e:
            logger.error(f"Error creating video: {e.stderr.decode() if e.stderr else str(e)}")
            output_video_path = None

        total_time = time.time() - start_time
        logger.info("Processing complete!")

        # Yield the file paths
        yield None, zip_path, output_video_path, f"Processing complete! Total time: {total_time:.2f} seconds"

    except Exception as e:
        logger.error(f"Error: {e}")
        yield None, None, None, f"Error processing video: {e}"

    finally:
        # Clean up temporary directory if necessary
        pass

def process_wrapper(video, fps=0, seed=0):
    if video is None:
        raise gr.Error("Please upload a video.")
    try:
        outputs = []
        # Use video directly, since it's the file path
        for output in process_video(video, fps, seed):
            outputs.append(output)
            yield output
        return outputs[-1]
    except Exception as e:
        raise gr.Error(f"Error processing video: {str(e)}")

# Custom CSS for styling (unchanged)
custom_css = """
    .title-container {
        text-align: center;
        padding: 10px 0;
    }

    #title {
        font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
        font-size: 36px;
        font-weight: bold;
        color: #000000;
        padding: 10px;
        border-radius: 10px;
        display: inline-block;
        background: linear-gradient(
            135deg,
            #e0f7fa, #e8f5e9, #fff9c4, #ffebee,
            #f3e5f5, #e1f5fe, #fff3e0, #e8eaf6
        );
        background-size: 400% 400%;
        animation: gradient-animation 15s ease infinite;
    }

    @keyframes gradient-animation {
        0% { background-position: 0% 50%; }
        50% { background-position: 100% 50%; }
        100% { background-position: 0% 50%; }
    }
"""

# Gradio Interface
with gr.Blocks(css=custom_css) as demo:
    gr.HTML('''
        <div class="title-container">
            <div id="title">Video Depth Estimation</div>
        </div>
    ''')

    with gr.Row():
        with gr.Column():
            video_input = gr.Video(label="Upload Video", interactive=True)
            fps_slider = gr.Slider(minimum=0, maximum=60, step=1, value=0, label="Output FPS (0 for original)")
            seed_slider = gr.Number(value=0, label="Seed")
            btn = gr.Button("Process Video")

        with gr.Column():
            preview_image = gr.Image(label="Live Preview")
            output_frames_zip = gr.File(label="Download Frame Sequence (ZIP)")
            output_video = gr.File(label="Download Video (MP4)")
            time_textbox = gr.Textbox(label="Status", interactive=False)

    btn.click(
        fn=process_wrapper,
        inputs=[video_input, fps_slider, seed_slider],
        outputs=[preview_image, output_frames_zip, output_video, time_textbox]
    )

    demo.queue()

if __name__ == "__main__":
    demo.launch(debug=True)