Spaces:
ginipick
/
Running on Zero

File size: 19,121 Bytes
b213d84
 
8fdc0c8
b213d84
 
 
 
 
24e151d
7778e32
 
 
 
afadbd4
80cec7b
99686f2
8fdc0c8
501340d
af38e9b
189dd29
b600457
 
 
 
 
189dd29
 
 
 
 
 
 
 
 
 
 
 
 
b600457
83b8d5b
 
 
 
 
 
 
 
 
 
 
189dd29
 
83b8d5b
189dd29
 
 
235a7ab
 
189dd29
235a7ab
9fbd4b4
 
 
 
 
 
 
 
189dd29
 
8fdc0c8
1f17448
189dd29
83b8d5b
 
f7aa706
 
83b8d5b
 
f7aa706
1f17448
 
 
501340d
1f17448
f7aa706
83b8d5b
 
 
 
f7aa706
189dd29
f7aa706
 
 
 
 
 
 
 
 
189dd29
f7aa706
 
 
 
 
 
 
 
 
26d2e48
f7aa706
83b8d5b
26d2e48
f7aa706
 
 
83b8d5b
 
f7aa706
189dd29
 
 
 
 
 
 
 
 
 
 
 
1f17448
 
 
 
 
 
 
 
 
189dd29
7ac3a5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7778e32
 
dcb1878
189dd29
dcb1878
7ac3a5d
 
 
 
dcb1878
 
 
7ac3a5d
189dd29
dcb1878
189dd29
5999e9b
7ac3a5d
5999e9b
 
7ac3a5d
5999e9b
7ac3a5d
189dd29
 
 
 
dcb1878
189dd29
dcb1878
 
7ac3a5d
dcb1878
189dd29
7ac3a5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb1878
 
7ac3a5d
dcb1878
189dd29
7ac3a5d
af38e9b
2a0877a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189dd29
2a0877a
 
 
 
 
 
 
af38e9b
2a0877a
 
af38e9b
2a0877a
 
 
 
 
501340d
2a0877a
 
 
 
 
 
26d2e48
2a0877a
 
 
 
 
501340d
 
 
2a0877a
 
 
501340d
2a0877a
 
 
 
 
 
 
 
 
 
26d2e48
2a0877a
 
26d2e48
2a0877a
 
 
 
 
26d2e48
2a0877a
 
af38e9b
189dd29
 
af38e9b
26d2e48
24e151d
26d2e48
 
 
 
 
24e151d
6fca6aa
 
 
 
 
 
2a0877a
6fca6aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a0877a
189dd29
 
501340d
12cd271
83b8d5b
12cd271
4076ac2
12cd271
 
 
24e151d
12cd271
 
 
 
24e151d
12cd271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24e151d
12cd271
 
24e151d
12cd271
 
 
24e151d
12cd271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24e151d
12cd271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24e151d
12cd271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24e151d
12cd271
 
 
 
 
 
 
 
 
 
 
 
 
 
83b8d5b
 
 
 
 
 
 
 
 
 
 
12cd271
235a7ab
 
 
 
6fca6aa
235a7ab
 
 
e696492
12cd271
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
import numpy as np
from PIL import Image
from huggingface_hub import snapshot_download, login
from leffa.transform import LeffaTransform
from leffa.model import LeffaModel
from leffa.inference import LeffaInference
from utils.garment_agnostic_mask_predictor import AutoMasker
from utils.densepose_predictor import DensePosePredictor
from utils.utils import resize_and_center
import spaces
import torch
from diffusers import DiffusionPipeline
from transformers import pipeline
import gradio as gr
import os
import random
import gc
from contextlib import contextmanager

# ์ƒ์ˆ˜ ์ •์˜
MAX_SEED = 2**32 - 1
BASE_MODEL = "black-forest-labs/FLUX.1-dev"
MODEL_LORA_REPO = "Motas/Flux_Fashion_Photography_Style"
CLOTHES_LORA_REPO = "prithivMLmods/Canopus-Clothing-Flux-LoRA"

# ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ๋ฅผ ์œ„ํ•œ ๋ฐ์ฝ”๋ ˆ์ดํ„ฐ
def safe_model_call(func):
    def wrapper(*args, **kwargs):
        try:
            clear_memory()
            result = func(*args, **kwargs)
            clear_memory()
            return result
        except Exception as e:
            clear_memory()
            print(f"Error in {func.__name__}: {str(e)}")
            raise
    return wrapper

# ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ๋ฅผ ์œ„ํ•œ ์ปจํ…์ŠคํŠธ ๋งค๋‹ˆ์ €
@contextmanager
def torch_gc():
    try:
        yield
    finally:
        gc.collect()
        if torch.cuda.is_available() and torch.cuda.current_device() >= 0:
            with torch.cuda.device('cuda'):
                torch.cuda.empty_cache()

def clear_memory():
    gc.collect()

def setup_environment():
    os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128'
    HF_TOKEN = os.getenv("HF_TOKEN")
    if not HF_TOKEN:
        raise ValueError("HF_TOKEN not found in environment variables")
    login(token=HF_TOKEN)
    return HF_TOKEN

def contains_korean(text):
    return any(ord('๊ฐ€') <= ord(char) <= ord('ํžฃ') for char in text)

@spaces.GPU()
def get_translator():
    return pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cuda")

# ํ™˜๊ฒฝ ์„ค์ • ์‹คํ–‰
setup_environment()

@spaces.GPU()
def initialize_fashion_pipe():
    with torch_gc():
        pipe = DiffusionPipeline.from_pretrained(
            BASE_MODEL,
            torch_dtype=torch.float16,
        )
        return pipe.to("cuda")

def setup():
    # Leffa ์ฒดํฌํฌ์ธํŠธ ๋‹ค์šด๋กœ๋“œ๋งŒ ์ˆ˜ํ–‰
    snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")

@spaces.GPU()
def get_translator():
    with torch_gc():
        return pipeline("translation", 
                       model="Helsinki-NLP/opus-mt-ko-en",
                       device="cuda")

@safe_model_call
def get_mask_predictor():
    global mask_predictor
    if mask_predictor is None:
        mask_predictor = AutoMasker(
            densepose_path="./ckpts/densepose",
            schp_path="./ckpts/schp",
        )
    return mask_predictor

@safe_model_call
def get_densepose_predictor():
    global densepose_predictor
    if densepose_predictor is None:
        densepose_predictor = DensePosePredictor(
            config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml",
            weights_path="./ckpts/densepose/model_final_162be9.pkl",
        )
    return densepose_predictor

@spaces.GPU()
def get_vt_model():
    with torch_gc():
        model = LeffaModel(
            pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
            pretrained_model="./ckpts/virtual_tryon.pth"
        )
        model = model.half()
        return model.to("cuda"), LeffaInference(model=model)

def load_lora(pipe, lora_path):
    try:
        pipe.unload_lora_weights()
    except:
        pass
    try:
        pipe.load_lora_weights(lora_path)
        return pipe
    except Exception as e:
        print(f"Warning: Failed to load LoRA weights from {lora_path}: {e}")
        return pipe

@spaces.GPU()
def get_mask_predictor():
    global mask_predictor
    if mask_predictor is None:
        mask_predictor = AutoMasker(
            densepose_path="./ckpts/densepose",
            schp_path="./ckpts/schp",
        )
    return mask_predictor

# ๋ชจ๋ธ ์ดˆ๊ธฐํ™” ํ•จ์ˆ˜ ์ˆ˜์ •
@spaces.GPU()
def initialize_fashion_pipe():
    try:
        pipe = DiffusionPipeline.from_pretrained(
            BASE_MODEL,
            torch_dtype=torch.float16,
            safety_checker=None,
            requires_safety_checker=False
        ).to("cuda")
        pipe.enable_model_cpu_offload()
        return pipe
    except Exception as e:
        print(f"Error initializing fashion pipe: {e}")
        raise

@spaces.GPU()
def generate_fashion(prompt, mode, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
    try:
        # ํ•œ๊ธ€ ์ฒ˜๋ฆฌ
        if contains_korean(prompt):
            with torch.inference_mode():
                translator = get_translator()
                translated = translator(prompt)[0]['translation_text']
                actual_prompt = translated
        else:
            actual_prompt = prompt

        # ํŒŒ์ดํ”„๋ผ์ธ ์ดˆ๊ธฐํ™”
        pipe = initialize_fashion_pipe()
        
        # LoRA ์„ค์ •
        if mode == "Generate Model":
            pipe.load_lora_weights(MODEL_LORA_REPO)
            trigger_word = "fashion photography, professional model"
        else:
            pipe.load_lora_weights(CLOTHES_LORA_REPO)
            trigger_word = "upper clothing, fashion item"

        # ํŒŒ๋ผ๋ฏธํ„ฐ ์ œํ•œ
        width = min(width, 768)
        height = min(height, 768)
        steps = min(steps, 30)
        
        # ์‹œ๋“œ ์„ค์ •
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
        generator = torch.Generator("cuda").manual_seed(seed)

        # ์ด๋ฏธ์ง€ ์ƒ์„ฑ
        with torch.inference_mode():
            output = pipe(
                prompt=f"{actual_prompt} {trigger_word}",
                num_inference_steps=steps,
                guidance_scale=cfg_scale,
                width=width,
                height=height,
                generator=generator,
                cross_attention_kwargs={"scale": lora_scale},
            )
            
        image = output.images[0]
        
        # ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ
        del pipe
        torch.cuda.empty_cache()
        gc.collect()

        return image, seed

    except Exception as e:
        print(f"Error in generate_fashion: {str(e)}")
        raise gr.Error(f"Generation failed: {str(e)}")

class ModelManager:
    def __init__(self):
        self.mask_predictor = None
        self.densepose_predictor = None
        self.translator = None

    @spaces.GPU()
    def get_mask_predictor(self):
        if self.mask_predictor is None:
            self.mask_predictor = AutoMasker(
                densepose_path="./ckpts/densepose",
                schp_path="./ckpts/schp",
            )
        return self.mask_predictor

    @spaces.GPU()
    def get_densepose_predictor(self):
        if self.densepose_predictor is None:
            self.densepose_predictor = DensePosePredictor(
                config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml",
                weights_path="./ckpts/densepose/model_final_162be9.pkl",
            )
        return self.densepose_predictor

    @spaces.GPU()
    def get_translator(self):
        if self.translator is None:
            self.translator = pipeline("translation", 
                                    model="Helsinki-NLP/opus-mt-ko-en",
                                    device="cuda")
        return self.translator

# ๋ชจ๋ธ ๋งค๋‹ˆ์ € ์ธ์Šคํ„ด์Šค ์ƒ์„ฑ
model_manager = ModelManager()

@spaces.GPU()
def leffa_predict(src_image_path, ref_image_path, control_type):
    try:
        with torch_gc():
            # ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
            model, inference = get_vt_model()

            # ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ
            src_image = Image.open(src_image_path)
            ref_image = Image.open(ref_image_path)
            src_image = resize_and_center(src_image, 768, 1024)
            ref_image = resize_and_center(ref_image, 768, 1024)

            src_image_array = np.array(src_image)
            ref_image_array = np.array(ref_image)

            # Mask ๋ฐ DensePose ์ฒ˜๋ฆฌ
            with torch.inference_mode():
                src_image = src_image.convert("RGB")
                mask_pred = model_manager.get_mask_predictor()
                mask = mask_pred(src_image, "upper")["mask"]

                dense_pred = model_manager.get_densepose_predictor()
                src_image_seg_array = dense_pred.predict_seg(src_image_array)
                densepose = Image.fromarray(src_image_seg_array)

            # Leffa ๋ณ€ํ™˜ ๋ฐ ์ถ”๋ก 
            transform = LeffaTransform()
            data = {
                "src_image": [src_image],
                "ref_image": [ref_image],
                "mask": [mask],
                "densepose": [densepose],
            }
            data = transform(data)
            
            with torch.inference_mode():
                output = inference(data)

            # ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ
            del model
            del inference
            torch.cuda.empty_cache()
            gc.collect()

            return np.array(output["generated_image"][0])
            
    except Exception as e:
        print(f"Error in leffa_predict: {str(e)}")
        raise

@spaces.GPU()
def leffa_predict_vt(src_image_path, ref_image_path):
    try:
        return leffa_predict(src_image_path, ref_image_path, "virtual_tryon")
    except Exception as e:
        print(f"Error in leffa_predict_vt: {str(e)}")
        raise

@spaces.GPU()
def generate_image(prompt, mode, cfg_scale=7.0, steps=30, seed=None, width=512, height=768, lora_scale=0.85):
    try:
        with torch_gc():
            # ํ•œ๊ธ€ ์ฒ˜๋ฆฌ
            if contains_korean(prompt):
                translator = model_manager.get_translator()
                with torch.inference_mode():
                    translated = translator(prompt)[0]['translation_text']
                    actual_prompt = translated
            else:
                actual_prompt = prompt

            # ํŒŒ์ดํ”„๋ผ์ธ ์ดˆ๊ธฐํ™”
            pipe = DiffusionPipeline.from_pretrained(
                BASE_MODEL,
                torch_dtype=torch.float16,
            )
            pipe = pipe.to("cuda")

            # LoRA ์„ค์ •
            if mode == "Generate Model":
                pipe.load_lora_weights(MODEL_LORA_REPO)
                trigger_word = "fashion photography, professional model"
            else:
                pipe.load_lora_weights(CLOTHES_LORA_REPO)
                trigger_word = "upper clothing, fashion item"

            # ์ด๋ฏธ์ง€ ์ƒ์„ฑ
            with torch.inference_mode():
                result = pipe(
                    prompt=f"{actual_prompt} {trigger_word}",
                    num_inference_steps=steps,
                    guidance_scale=cfg_scale,
                    width=width,
                    height=height,
                    generator=torch.Generator("cuda").manual_seed(
                        seed if seed is not None else torch.randint(0, 2**32 - 1, (1,)).item()
                    ),
                    joint_attention_kwargs={"scale": lora_scale},
                ).images[0]

            # ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ
            del pipe
            return result, seed

    except Exception as e:
        raise gr.Error(f"Generation failed: {str(e)}")

# ์ดˆ๊ธฐ ์„ค์ • ์‹คํ–‰
setup()    

def create_interface():
    with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange") as demo:    
        gr.Markdown("# ๐ŸŽญ FitGen:Fashion Studio & Virtual Try-on")
        
        with gr.Tabs():
            # ํŒจ์…˜ ์ƒ์„ฑ ํƒญ
            with gr.Tab("Fashion Generation"):
                with gr.Column():
                    mode = gr.Radio(
                        choices=["Generate Model", "Generate Clothes"],
                        label="Generation Mode",
                        value="Generate Model"
                    )
            
                    # ์˜ˆ์ œ ํ”„๋กฌํ”„ํŠธ ์„ค์ •
                    example_model_prompts = [
                        "professional fashion model, full body shot, standing pose, natural lighting, studio background, high fashion, elegant pose",
                        "fashion model portrait, upper body, confident pose, fashion photography, neutral background, professional lighting", 
                        "stylish fashion model, three-quarter view, editorial pose, high-end fashion magazine style, minimal background"
                    ]

                    example_clothes_prompts = [
                        "luxury designer sweater, cashmere material, cream color, cable knit pattern, high-end fashion, product photography",
                        "elegant business blazer, tailored fit, charcoal grey, premium wool fabric, professional wear",
                        "modern streetwear hoodie, oversized fit, minimalist design, premium cotton, urban style"
                    ]
            
                    prompt = gr.TextArea(
                        label="Fashion Description (ํ•œ๊ธ€ ๋˜๋Š” ์˜์–ด)",
                        placeholder="ํŒจ์…˜ ๋ชจ๋ธ์ด๋‚˜ ์˜๋ฅ˜๋ฅผ ์„ค๋ช…ํ•˜์„ธ์š”..."
                    )
            
                    # ์˜ˆ์ œ ์„น์…˜ ์ถ”๊ฐ€
                    gr.Examples(
                        examples=example_model_prompts + example_clothes_prompts,
                        inputs=prompt,
                        label="Example Prompts"
                    )
            
                    with gr.Row():
                        with gr.Column():
                            result = gr.Image(label="Generated Result")
                            generate_button = gr.Button("Generate Fashion")
            
                    with gr.Accordion("Advanced Options", open=False):
                        with gr.Group():
                            with gr.Row():
                                with gr.Column():
                                    cfg_scale = gr.Slider(
                                        label="CFG Scale",
                                        minimum=1,
                                        maximum=20,
                                        step=0.5,
                                        value=7.0
                                    )
                                    steps = gr.Slider(
                                        label="Steps",
                                        minimum=1,
                                        maximum=30,
                                        step=1,
                                        value=30
                                    )
                                    lora_scale = gr.Slider(
                                        label="LoRA Scale",
                                        minimum=0,
                                        maximum=1,
                                        step=0.01,
                                        value=0.85
                                    )
                            
                            with gr.Row():
                                width = gr.Slider(
                                    label="Width",
                                    minimum=256,
                                    maximum=768,
                                    step=64,
                                    value=512
                                )
                                height = gr.Slider(
                                    label="Height", 
                                    minimum=256,
                                    maximum=768,
                                    step=64,
                                    value=768
                                )
                            
                            with gr.Row():
                                randomize_seed = gr.Checkbox(
                                    True,
                                    label="Randomize seed"
                                )
                                seed = gr.Slider(
                                    label="Seed",
                                    minimum=0,
                                    maximum=2**32-1,
                                    step=1,
                                    value=42
                                )

            # ๊ฐ€์ƒ ํ”ผํŒ… ํƒญ
            with gr.Tab("Virtual Try-on"):
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("#### Person Image")
                        vt_src_image = gr.Image(
                            sources=["upload"],
                            type="filepath",
                            label="Person Image",
                            width=512,
                            height=512,
                        )
                        gr.Examples(
                            inputs=vt_src_image,
                            examples_per_page=5,
                            examples=["a1.webp",
                                    "a2.webp",
                                    "a3.webp",
                                    "a4.webp",
                                    "a5.webp"]
                        )

                    with gr.Column():
                        gr.Markdown("#### Garment Image")
                        vt_ref_image = gr.Image(
                            sources=["upload"],
                            type="filepath",
                            label="Garment Image",
                            width=512,
                            height=512,
                        )
                        gr.Examples(
                            inputs=vt_ref_image,
                            examples_per_page=5,
                            examples=["b1.webp",
                                    "b2.webp",
                                    "b3.webp",
                                    "b4.webp",
                                    "b5.webp"]
                        )

                    with gr.Column():
                        gr.Markdown("#### Generated Image")
                        vt_gen_image = gr.Image(
                            label="Generated Image",
                            width=512,
                            height=512,
                        )
                        vt_gen_button = gr.Button("Try-on")

        vt_gen_button.click(
            fn=leffa_predict_vt,
            inputs=[vt_src_image, vt_ref_image],
            outputs=[vt_gen_image]
        )

        generate_button.click(
            fn=generate_image,
            inputs=[prompt, mode, cfg_scale, steps, seed, width, height, lora_scale],
            outputs=[result, seed]
        ).success(
            fn=lambda: gc.collect(),  # ์„ฑ๊ณต ํ›„ ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ
            inputs=None,
            outputs=None
        )

        return demo

if __name__ == "__main__":
    setup_environment()
    demo = create_interface()
    demo.queue()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False
    )