HivisionIDPhotos / src /cuny_tools.py
gordonchan's picture
Upload 49 files
c5819e3 verified
raw
history blame
28.8 kB
import cv2
import numpy as np
from hivisionai.hycv.utils import get_box_pro
from hivisionai.hycv.vision import cover_image, draw_picture_dots
from math import fabs, sin, radians, cos
def opencv_rotate(img, angle):
h, w = img.shape[:2]
center = (w / 2, h / 2)
scale = 1.0
# 2.1获取M矩阵
"""
M矩阵
[
cosA -sinA (1-cosA)*centerX+sinA*centerY
sinA cosA -sinA*centerX+(1-cosA)*centerY
]
"""
M = cv2.getRotationMatrix2D(center, angle, scale)
# 2.2 新的宽高,radians(angle) 把角度转为弧度 sin(弧度)
new_H = int(w * fabs(sin(radians(angle))) + h * fabs(cos(radians(angle))))
new_W = int(h * fabs(sin(radians(angle))) + w * fabs(cos(radians(angle))))
# 2.3 平移
M[0, 2] += (new_W - w) / 2
M[1, 2] += (new_H - h) / 2
rotate = cv2.warpAffine(img, M, (new_W, new_H), borderValue=(0, 0, 0))
return rotate
def transformationNeck2(image:np.ndarray, per_to_side:float=0.8)->np.ndarray:
"""
透视变换脖子函数,输入图像和四个点(矩形框)
矩形框内的图像可能是不完整的(边角有透明区域)
我们将根据透视变换将矩形框内的图像拉伸成和矩形框一样的形状.
算法分为几个步骤: 选择脖子的四个点 -> 选定这四个点拉伸后的坐标 -> 透视变换 -> 覆盖原图
"""
_, _, _, a = cv2.split(image) # 这应该是一个四通道的图像
height, width = a.shape
def locate_side(image_:np.ndarray, x_:int, y_max:int) -> int:
# 寻找x=y, 且 y <= y_max 上从下往上第一个非0的点,如果没找到就返回0
y_ = 0
for y_ in range(y_max - 1, -1, -1):
if image_[y_][x_] != 0:
break
return y_
def locate_width(image_:np.ndarray, y_:int, mode, left_or_right:int=None):
# 从y=y这个水平线上寻找两边的非零点
# 增加left_or_right的原因在于为下面check_jaw服务
if mode==1: # 左往右
x_ = 0
if left_or_right is None:
left_or_right = 0
for x_ in range(left_or_right, width):
if image_[y_][x_] != 0:
break
else: # 右往左
x_ = width
if left_or_right is None:
left_or_right = width - 1
for x_ in range(left_or_right, -1, -1):
if image_[y_][x_] != 0:
break
return x_
def check_jaw(image_:np.ndarray, left_, right_):
"""
检查选择的点是否与截到下巴,如果截到了,就往下平移一个单位
"""
f= True # True代表没截到下巴
# [x, y]
for x_cell in range(left_[0] + 1, right_[0]):
if image_[left_[1]][x_cell] == 0:
f = False
break
if f is True:
return left_, right_
else:
y_ = left_[1] + 2
x_left_ = locate_width(image_, y_, mode=1, left_or_right=left_[0])
x_right_ = locate_width(image_, y_, mode=2, left_or_right=right_[0])
left_, right_ = check_jaw(image_, [x_left_, y_], [x_right_, y_])
return left_, right_
# 选择脖子的四个点,核心在于选择上面的两个点,这两个点的确定的位置应该是"宽出来的"两个点
_, _ ,_, a = cv2.split(image) # 这应该是一个四通道的图像
ret,a_thresh = cv2.threshold(a,127,255,cv2.THRESH_BINARY)
y_high, y_low, x_left, x_right = get_box_pro(image=image, model=1) # 直接返回矩阵信息
y_left_side = locate_side(image_=a_thresh, x_=x_left, y_max=y_low) # 左边的点的y轴坐标
y_right_side = locate_side(image_=a_thresh, x_=x_right, y_max=y_low) # 右边的点的y轴坐标
y = min(y_left_side, y_right_side) # 将两点的坐标保持相同
cell_left_above, cell_right_above = check_jaw(a_thresh,[x_left, y], [x_right, y])
x_left, x_right = cell_left_above[0], cell_right_above[0]
# 此时我们寻找到了脖子的"宽出来的"两个点,这两个点作为上面的两个点, 接下来寻找下面的两个点
if per_to_side >1:
assert ValueError("per_to_side 必须小于1!")
# 在后面的透视变换中我会把它拉成矩形, 在这里我先获取四个点的高和宽
height_ = 150 # 这个值应该是个变化的值,与拉伸的长度有关,但是现在先规定为150
width_ = x_right - x_left # 其实也就是 cell_right_above[1] - cell_left_above[1]
y = int((y_low - y)*per_to_side + y) # 定位y轴坐标
cell_left_below, cell_right_bellow = ([locate_width(a_thresh, y_=y, mode=1), y], [locate_width(a_thresh, y_=y, mode=2), y])
# 四个点全齐,开始透视变换
# 寻找透视变换后的四个点,只需要变换below的两个点即可
# cell_left_below_final, cell_right_bellow_final = ([cell_left_above[1], y_low], [cell_right_above[1], y_low])
# 需要变换的四个点为 cell_left_above, cell_right_above, cell_left_below, cell_right_bellow
rect = np.array([cell_left_above, cell_right_above, cell_left_below, cell_right_bellow],
dtype='float32')
# 变化后的坐标点
dst = np.array([[0, 0], [width_, 0], [0 , height_], [width_, height_]],
dtype='float32')
# 计算变换矩阵
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (width_, height_))
final = cover_image(image=warped, background=image, mode=3, x=cell_left_above[0], y=cell_left_above[1])
# tmp = np.zeros(image.shape)
# final = cover_image(image=warped, background=tmp, mode=3, x=cell_left_above[0], y=cell_left_above[1])
# final = cover_image(image=image, background=final, mode=3, x=0, y=0)
return final
def transformationNeck(image:np.ndarray, cutNeckHeight:int, neckBelow:int,
toHeight:int,per_to_side:float=0.75) -> np.ndarray:
"""
脖子扩充算法, 其实需要输入的只是脖子扣出来的部分以及需要被扩充的高度/需要被扩充成的高度.
"""
height, width, channels = image.shape
_, _, _, a = cv2.split(image) # 这应该是一个四通道的图像
ret, a_thresh = cv2.threshold(a, 127, 255, cv2.THRESH_BINARY) # 将透明图层二值化
def locate_width(image_:np.ndarray, y_:int, mode, left_or_right:int=None):
# 从y=y这个水平线上寻找两边的非零点
# 增加left_or_right的原因在于为下面check_jaw服务
if mode==1: # 左往右
x_ = 0
if left_or_right is None:
left_or_right = 0
for x_ in range(left_or_right, width):
if image_[y_][x_] != 0:
break
else: # 右往左
x_ = width
if left_or_right is None:
left_or_right = width - 1
for x_ in range(left_or_right, -1, -1):
if image_[y_][x_] != 0:
break
return x_
def check_jaw(image_:np.ndarray, left_, right_):
"""
检查选择的点是否与截到下巴,如果截到了,就往下平移一个单位
"""
f= True # True代表没截到下巴
# [x, y]
for x_cell in range(left_[0] + 1, right_[0]):
if image_[left_[1]][x_cell] == 0:
f = False
break
if f is True:
return left_, right_
else:
y_ = left_[1] + 2
x_left_ = locate_width(image_, y_, mode=1, left_or_right=left_[0])
x_right_ = locate_width(image_, y_, mode=2, left_or_right=right_[0])
left_, right_ = check_jaw(image_, [x_left_, y_], [x_right_, y_])
return left_, right_
x_left = locate_width(image_=a_thresh, mode=1, y_=cutNeckHeight)
x_right = locate_width(image_=a_thresh, mode=2, y_=cutNeckHeight)
# 在这里我们取消了对下巴的检查,原因在于输入的imageHeight并不能改变
# cell_left_above, cell_right_above = check_jaw(a_thresh, [x_left, imageHeight], [x_right, imageHeight])
cell_left_above, cell_right_above = [x_left, cutNeckHeight], [x_right, cutNeckHeight]
toWidth = x_right - x_left # 矩形宽
# 此时我们寻找到了脖子的"宽出来的"两个点,这两个点作为上面的两个点, 接下来寻找下面的两个点
if per_to_side >1:
assert ValueError("per_to_side 必须小于1!")
y_below = int((neckBelow - cutNeckHeight) * per_to_side + cutNeckHeight) # 定位y轴坐标
cell_left_below = [locate_width(a_thresh, y_=y_below, mode=1), y_below]
cell_right_bellow = [locate_width(a_thresh, y_=y_below, mode=2), y_below]
# 四个点全齐,开始透视变换
# 需要变换的四个点为 cell_left_above, cell_right_above, cell_left_below, cell_right_bellow
rect = np.array([cell_left_above, cell_right_above, cell_left_below, cell_right_bellow],
dtype='float32')
# 变化后的坐标点
dst = np.array([[0, 0], [toWidth, 0], [0 , toHeight], [toWidth, toHeight]],
dtype='float32')
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (toWidth, toHeight))
# 将变换后的图像覆盖到原图上
final = cover_image(image=warped, background=image, mode=3, x=cell_left_above[0], y=cell_left_above[1])
return final
def bestJunctionCheck_beta(image:np.ndarray, stepSize:int=4, if_per:bool=False):
"""
最优衔接点检测算法, 去寻找脖子的"拐点"
"""
point_k = 1
_, _, _, a = cv2.split(image) # 这应该是一个四通道的图像
height, width = a.shape
ret, a_thresh = cv2.threshold(a, 127, 255, cv2.THRESH_BINARY) # 将透明图层二值化
y_high, y_low, x_left, x_right = get_box_pro(image=image, model=1) # 直接返回矩阵信息
def scan(y_:int, max_num:int=2):
num = 0
left = False
right = False
for x_ in range(width):
if a_thresh[y_][x_] != 0:
if x_ < width // 2 and left is False:
num += 1
left = True
elif x_ > width // 2 and right is False:
num += 1
right = True
return True if num >= max_num else False
def locate_neck_above():
"""
定位脖子的尖尖脚
"""
for y_ in range( y_high - 2, height):
if scan(y_):
return y_, y_
y_high_left, y_high_right = locate_neck_above()
def locate_width_pro(image_:np.ndarray, y_:int, mode):
"""
这会是一个生成器,用于生成脖子两边的轮廓
x_, y_ 是启始点的坐标,每一次寻找都会让y_+1
mode==1说明是找左边的边,即,image_[y_][x_] == 0 且image_[y_][x_ + 1] !=0 时跳出;
否则 当image_[y_][x_] != 0 时, x_ - 1; 当image_[y_][x_] == 0 且 image_[y_][x_ + 1] ==0 时x_ + 1
mode==2说明是找右边的边,即,image_[y_][x_] == 0 且image_[y_][x_ - 1] !=0 时跳出
否则 当image_[y_][x_] != 0 时, x_ + 1; 当image_[y_][x_] == 0 且 image_[y_][x_ - 1] ==0 时x_ - 1
"""
y_ += 1
if mode == 1:
x_ = 0
while 0 <= y_ < height and 0 <= x_ < width:
while image_[y_][x_] != 0 and x_ >= 0:
x_ -= 1
while image_[y_][x_] == 0 and image_[y_][x_ + 1] == 0 and x_ < width - 2:
x_ += 1
yield [y_, x_]
y_ += 1
elif mode == 2:
x_ = width-1
while 0 <= y_ < height and 0 <= x_ < width:
while image_[y_][x_] != 0 and x_ < width - 2: x_ += 1
while image_[y_][x_] == 0 and image_[y_][x_ - 1] == 0 and x_ >= 0: x_ -= 1
yield [y_, x_]
y_ += 1
yield False
def kGenerator(image_:np.ndarray, mode):
"""
导数生成器,用来生成每一个点对应的导数
"""
y_ = y_high_left if mode == 1 else y_high_right
c_generator = locate_width_pro(image_=image_, y_=y_, mode=mode)
for cell in c_generator:
nc = locate_width_pro(image_=image_, y_=cell[0] + stepSize, mode=mode)
nextCell = next(nc)
if nextCell is False:
yield False, False
else:
k = (cell[1] - nextCell[1]) / stepSize
yield k, cell
def findPt(image_:np.ndarray, mode):
k_generator = kGenerator(image_=image_, mode=mode)
k, cell = next(k_generator)
k_next, cell_next = next(k_generator)
if k is False:
raise ValueError("无法找到拐点!")
while k_next is not False:
k_next, cell_next = next(k_generator)
if (k_next < - 1 / stepSize) or k_next > point_k:
break
cell = cell_next
# return int(cell[0] + stepSize / 2)
return cell[0]
# 先找左边的拐点:
pointY_left = findPt(image_=a_thresh, mode=1)
# 再找右边的拐点:
pointY_right = findPt(image_=a_thresh, mode=2)
point = (pointY_left + pointY_right) // 2
if if_per is True:
point = (pointY_left + pointY_right) // 2
return point / (y_low - y_high)
pointX_left = next(locate_width_pro(image_=a_thresh, y_= point - 1, mode=1))[1]
pointX_right = next(locate_width_pro(image_=a_thresh, y_=point- 1, mode=2))[1]
return [pointX_left, point], [pointX_right, point]
def bestJunctionCheck(image:np.ndarray, offset:int, stepSize:int=4):
"""
最优点检测算算法输入一张脖子图片(无论这张图片是否已经被二值化,我都认为没有被二值化),输出一个小数(脖子最上方与衔接点位置/脖子图像长度)
与beta版不同的是它新增了一个阈值限定内容.
对于脖子而言,我我们首先可以定位到上面的部分,然后根据上面的这个点向下进行遍历检测.
与beta版类似,我们使用一个stepSize来用作斜率的检测
但是对于遍历检测而言,与beta版不同的是,我们需要对遍历的地方进行一定的限制.
限制的标准是,如果当前遍历的点的横坐标和起始点横坐标的插值超过了某个阈值,则认为是越界.
"""
point_k = 1
_, _, _, a = cv2.split(image) # 这应该是一个四通道的图像
height, width = a.shape
ret, a_thresh = cv2.threshold(a, 127, 255, cv2.THRESH_BINARY) # 将透明图层二值化
# 直接返回脖子的位置信息, 修正系数为0, get_box_pro内部也封装了二值化,所以直接输入原图
y_high, y_low, _, _ = get_box_pro(image=image, model=1, correction_factor=0)
# 真正有用的只有上下y轴的两个值...
# 首先当然是确定起始点的位置,我们用同样的scan扫描函数进行行遍历.
def scan(y_:int, max_num:int=2):
num = 0
# 设定两个值,分别代表脖子的左边和右边
left = False
right = False
for x_ in range(width):
if a_thresh[y_][x_] != 0:
# 检测左边
if x_ < width // 2 and left is False:
num += 1
left = True
# 检测右边
elif x_ > width // 2 and right is False:
num += 1
right = True
return True if num >= max_num else False
def locate_neck_above():
"""
定位脖子的尖尖脚
"""
# y_high就是脖子的最高点
for y_ in range(y_high, height):
if scan(y_):
return y_
y_start = locate_neck_above() # 得到遍历的初始高度
if y_low - y_start < stepSize: assert ValueError("脖子太小!")
# 然后获取一下初始的坐标点
x_left, x_right = 0, width
for x_left_ in range(0, width):
if a_thresh[y_start][x_left_] != 0:
x_left = x_left_
break
for x_right_ in range(width -1 , -1, -1):
if a_thresh[y_start][x_right_] != 0:
x_right = x_right_
break
# 接下来我定义两个生成器,首先是脖子轮廓(向下寻找的)生成器,每进行一次next,生成器会返回y+1的脖子轮廓点
def contoursGenerator(image_:np.ndarray, y_:int, mode):
"""
这会是一个生成器,用于生成脖子两边的轮廓
y_ 是启始点的y坐标,每一次寻找都会让y_+1
mode==1说明是找左边的边,即,image_[y_][x_] == 0 且image_[y_][x_ + 1] !=0 时跳出;
否则 当image_[y_][x_] != 0 时, x_ - 1; 当image_[y_][x_] == 0 且 image_[y_][x_ + 1] ==0 时x_ + 1
mode==2说明是找右边的边,即,image_[y_][x_] == 0 且image_[y_][x_ - 1] !=0 时跳出
否则 当image_[y_][x_] != 0 时, x_ + 1; 当image_[y_][x_] == 0 且 image_[y_][x_ - 1] ==0 时x_ - 1
"""
y_ += 1
try:
if mode == 1:
x_ = 0
while 0 <= y_ < height and 0 <= x_ < width:
while image_[y_][x_] != 0 and x_ >= 0: x_ -= 1
# 这里其实会有bug,不过可以不管
while x_ < width and image_[y_][x_] == 0 and image_[y_][x_ + 1] == 0: x_ += 1
yield [y_, x_]
y_ += 1
elif mode == 2:
x_ = width-1
while 0 <= y_ < height and 0 <= x_ < width:
while x_ < width and image_[y_][x_] != 0: x_ += 1
while x_ >= 0 and image_[y_][x_] == 0 and image_[y_][x_ - 1] == 0: x_ -= 1
yield [y_, x_]
y_ += 1
# 当处理失败则返回False
except IndexError:
yield False
# 然后是斜率生成器,这个生成器依赖子轮廓生成器,每一次生成轮廓后会计算斜率,另一个点的选取和stepSize有关
def kGenerator(image_: np.ndarray, mode):
"""
导数生成器,用来生成每一个点对应的导数
"""
y_ = y_start
# 对起始点建立一个生成器, mode=1时是左边轮廓,mode=2时是右边轮廓
c_generator = contoursGenerator(image_=image_, y_=y_, mode=mode)
for cell in c_generator:
# 寻找距离当前cell距离为stepSize的轮廓点
kc = contoursGenerator(image_=image_, y_=cell[0] + stepSize, mode=mode)
kCell = next(kc)
if kCell is False:
# 寻找失败
yield False, False
else:
# 寻找成功,返回当坐标点和斜率值
# 对于左边而言,斜率必然是前一个点的坐标减去后一个点的坐标
# 对于右边而言,斜率必然是后一个点的坐标减去前一个点的坐标
k = (cell[1] - kCell[1]) / stepSize if mode == 1 else (kCell[1] - cell[1]) / stepSize
yield k, cell
# 接着开始写寻找算法,需要注意的是我们是分两边选择的
def findPt(image_:np.ndarray, mode):
x_base = x_left if mode == 1 else x_right
k_generator = kGenerator(image_=image_, mode=mode)
k, cell = k_generator.__next__()
if k is False:
raise ValueError("无法找到拐点!")
k_next, cell_next = k_generator.__next__()
while k_next is not False:
cell = cell_next
if cell[1] > x_base and mode == 2:
x_base = cell[1]
elif cell[1] < x_base and mode == 1:
x_base = cell[1]
# 跳出循环的方式一:斜率超过了某个值
if k_next > point_k:
print("K out")
break
# 跳出循环的方式二:超出阈值
elif abs(cell[1] - x_base) > offset:
print("O out")
break
k_next, cell_next = k_generator.__next__()
if abs(cell[1] - x_base) > offset:
cell[0] = cell[0] - offset - 1
return cell[0]
# 先找左边的拐点:
pointY_left = findPt(image_=a_thresh, mode=1)
# 再找右边的拐点:
pointY_right = findPt(image_=a_thresh, mode=2)
point = min(pointY_right, pointY_left)
per = (point - y_high) / (y_low - y_high)
# pointX_left = next(contoursGenerator(image_=a_thresh, y_= point- 1, mode=1))[1]
# pointX_right = next(contoursGenerator(image_=a_thresh, y_=point - 1, mode=2))[1]
# return [pointX_left, point], [pointX_right, point]
return per
def checkSharpCorner(image:np.ndarray):
_, _, _, a = cv2.split(image) # 这应该是一个四通道的图像
height, width = a.shape
ret, a_thresh = cv2.threshold(a, 127, 255, cv2.THRESH_BINARY) # 将透明图层二值化
# 直接返回脖子的位置信息, 修正系数为0, get_box_pro内部也封装了二值化,所以直接输入原图
y_high, y_low, _, _ = get_box_pro(image=image, model=1, correction_factor=0)
def scan(y_:int, max_num:int=2):
num = 0
# 设定两个值,分别代表脖子的左边和右边
left = False
right = False
for x_ in range(width):
if a_thresh[y_][x_] != 0:
# 检测左边
if x_ < width // 2 and left is False:
num += 1
left = True
# 检测右边
elif x_ > width // 2 and right is False:
num += 1
right = True
return True if num >= max_num else False
def locate_neck_above():
"""
定位脖子的尖尖脚
"""
# y_high就是脖子的最高点
for y_ in range(y_high, height):
if scan(y_):
return y_
y_start = locate_neck_above()
return y_start
def checkJaw(image:np.ndarray, y_start:int):
# 寻找"马鞍点"
_, _, _, a = cv2.split(image) # 这应该是一个四通道的图像
height, width = a.shape
ret, a_thresh = cv2.threshold(a, 127, 255, cv2.THRESH_BINARY) # 将透明图层二值化
if width <=1: raise TypeError("图像太小!")
x_left, x_right = 0, width - 1
for x_left in range(width):
if a_thresh[y_start][x_left] != 0:
while a_thresh[y_start][x_left] != 0: x_left += 1
break
for x_right in range(width-1, -1, -1):
if a_thresh[y_start][x_right] != 0:
while a_thresh[y_start][x_right] != 0: x_right -= 1
break
point_list_y = []
point_list_x = []
for x in range(x_left, x_right):
y = y_start
while a_thresh[y][x] == 0: y += 1
point_list_y.append(y)
point_list_x.append(x)
y = max(point_list_y)
x = point_list_x[point_list_y.index(y)]
return x, y
def checkHairLOrR(cloth_image_input_cut,
input_a,
neck_a,
cloth_image_input_top_y,
cutbar_top=0.4,
cutbar_bottom=0.5,
threshold=0.3):
"""
本函数用于检测衣服是否被头发遮挡,当前只考虑左右是否被遮挡,即"一刀切"
返回int
0代表没有被遮挡
1代表左边被遮挡
2代表右边被遮挡
3代表全被遮挡了
约定,输入的图像是一张灰度图,且被二值化过.
"""
def per_darkPoint(img:np.ndarray) -> int:
"""
用于遍历相加图像上的黑点.
然后返回黑点数/图像面积
"""
h, w = img.shape
sum_darkPoint = 0
for y in range(h):
for x in range(w):
if img[y][x] == 0:
sum_darkPoint += 1
return sum_darkPoint / (h * w)
if threshold < 0 or threshold > 1: raise TypeError("阈值设置必须在0和1之间!")
# 裁出cloth_image_input_cut按高度40%~50%的区域-cloth_image_input_cutbar,并转换为A矩阵,做二值化
cloth_image_input_height = cloth_image_input_cut.shape[0]
_, _, _, cloth_image_input_cutbar = cv2.split(cloth_image_input_cut[
int(cloth_image_input_height * cutbar_top):int(
cloth_image_input_height * cutbar_bottom), :])
_, cloth_image_input_cutbar = cv2.threshold(cloth_image_input_cutbar, 127, 255, cv2.THRESH_BINARY)
# 裁出input_image、neck_image的A矩阵的对应区域,并做二值化
input_a_cutbar = input_a[cloth_image_input_top_y + int(cloth_image_input_height * cutbar_top):
cloth_image_input_top_y + int(cloth_image_input_height * cutbar_bottom), :]
_, input_a_cutbar = cv2.threshold(input_a_cutbar, 127, 255, cv2.THRESH_BINARY)
neck_a_cutbar = neck_a[cloth_image_input_top_y + int(cloth_image_input_height * cutbar_top):
cloth_image_input_top_y + int(cloth_image_input_height * cutbar_bottom), :]
_, neck_a_cutbar = cv2.threshold(neck_a_cutbar, 50, 255, cv2.THRESH_BINARY)
# 将三个cutbar合到一起-result_a_cutbar
input_a_cutbar = np.uint8(255 - input_a_cutbar)
result_a_cutbar = cv2.add(input_a_cutbar, cloth_image_input_cutbar)
result_a_cutbar = cv2.add(result_a_cutbar, neck_a_cutbar)
if_mask = 0
# 我们将图像 一刀切,分为左边和右边
height, width = result_a_cutbar.shape # 一通道图像
left_image = result_a_cutbar[:, :width//2]
right_image = result_a_cutbar[:, width//2:]
if per_darkPoint(left_image) > threshold:
if_mask = 1
if per_darkPoint(right_image) > threshold:
if_mask = 3 if if_mask == 1 else 2
return if_mask
def find_black(image):
"""
找黑色点函数,遇到输入矩阵中的第一个黑点,返回它的y值
"""
height, width = image.shape[0], image.shape[1]
for i in range(height):
for j in range(width):
if image[i, j] < 127:
return i
return None
def convert_black_array(image):
height, width = image.shape[0], image.shape[1]
mask = np.zeros([height, width])
for j in range(width):
for i in range(height):
if image[i, j] > 127:
mask[i:, j] = 1
break
return mask
def checkLongHair(neck_image, head_bottom_y, neck_top_y):
"""
长发检测函数,输入为head/neck图像,通过下巴是否为最低点,来判断是否为长发
:return 0 : 短发
:return 1 : 长发
"""
jaw_y = neck_top_y + checkJaw(neck_image, y_start=checkSharpCorner(neck_image))[1]
if jaw_y >= head_bottom_y-3:
return 0
else:
return 1
def checkLongHair2(head_bottom_y, cloth_top_y):
if head_bottom_y > cloth_top_y+10:
return 1
else:
return 0
if __name__ == "__main__":
for i in range(1, 8):
img = cv2.imread(f"./neck_temp/neck_image{i}.png", cv2.IMREAD_UNCHANGED)
# new = transformationNeck(image=img, cutNeckHeight=419,neckBelow=472, toHeight=150)
# point_list = bestJunctionCheck(img, offset=5, stepSize=3)
# per = bestJunctionCheck(img, offset=5, stepSize=3)
# # 返回一个小数的形式, 接下来我将它处理为两个点
point_list = []
# y_high_, y_low_, _, _ = get_box_pro(image=img, model=1, conreection_factor=0)
# _y = y_high_ + int((y_low_ - y_high_) * per)
# _, _, _, a_ = cv2.split(img) # 这应该是一个四通道的图像
# h, w = a_.shape
# r, a_t = cv2.threshold(a_, 127, 255, cv2.THRESH_BINARY) # 将透明图层二值化
# _x = 0
# for _x in range(w):
# if a_t[_y][_x] != 0:
# break
# point_list.append([_x, _y])
# for _x in range(w - 1, -1, -1):
# if a_t[_y][_x] != 0:
# break
# point_list.append([_x, _y])
y = checkSharpCorner(img)
point = checkJaw(image=img, y_start=y)
point_list.append(point)
new = draw_picture_dots(img, point_list, pen_size=2)
cv2.imshow(f"{i}", new)
cv2.waitKey(0)