|
import torch |
|
from transformers import pipeline |
|
from datasets import load_dataset |
|
from datasets import Audio |
|
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan |
|
|
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
pipe = pipeline( |
|
"automatic-speech-recognition", model="openai/whisper-base", device=device |
|
) |
|
|
|
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") |
|
|
|
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device) |
|
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) |
|
|
|
|
|
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") |
|
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) |
|
|
|
def translate(audio): |
|
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate","language": "fr"}) |
|
return outputs["text"] |
|
|
|
def synthesise(text): |
|
inputs = processor(text=text, return_tensors="pt") |
|
speech = model.generate_speech( |
|
inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder |
|
) |
|
return speech.cpu() |
|
|
|
import numpy as np |
|
|
|
target_dtype = np.int16 |
|
max_range = np.iinfo(target_dtype).max |
|
|
|
|
|
def speech_to_speech_translation(audio): |
|
translated_text = translate(audio) |
|
print(f"{translated_text}") |
|
synthesised_speech = synthesise(translated_text) |
|
synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16) |
|
return 16000, synthesised_speech |
|
|
|
import gradio as gr |
|
|
|
demo = gr.Blocks() |
|
|
|
mic_translate = gr.Interface( |
|
fn=speech_to_speech_translation, |
|
inputs=gr.Audio(sources= ["microphone","upload"], type="filepath"), |
|
outputs=gr.Audio(label="Generated Speech", type="numpy"), |
|
) |
|
|
|
file_translate = gr.Interface( |
|
fn=speech_to_speech_translation, |
|
inputs=gr.Audio(sources=["upload"], type="filepath"), |
|
outputs=gr.Audio(label="Generated Speech", type="numpy"), |
|
) |
|
|
|
with demo: |
|
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) |
|
|
|
demo.launch() |