|
import streamlit as st |
|
import torch |
|
import os |
|
import librosa |
|
import librosa.display |
|
import matplotlib.pyplot as plt |
|
from audiosr import build_model, super_resolution, save_wave |
|
import tempfile |
|
import numpy as np |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
st.title("AudioSR: Versatile Audio Super-Resolution") |
|
st.write(""" |
|
Upload your low-resolution audio files, and AudioSR will enhance them to high fidelity! |
|
Supports all types of audio (music, speech, sound effects, etc.) with arbitrary sampling rates. |
|
""") |
|
|
|
|
|
uploaded_file = st.file_uploader("Upload an audio file (WAV format)", type=["wav"]) |
|
|
|
|
|
st.sidebar.title("Model Parameters") |
|
model_name = st.sidebar.selectbox("Select Model", ["basic", "speech"], index=0) |
|
ddim_steps = st.sidebar.slider("DDIM Steps", min_value=10, max_value=100, value=50) |
|
guidance_scale = st.sidebar.slider("Guidance Scale", min_value=1.0, max_value=10.0, value=3.5) |
|
random_seed = st.sidebar.number_input("Random Seed", min_value=0, value=42, step=1) |
|
latent_t_per_second = 12.8 |
|
|
|
|
|
def plot_spectrogram(audio_path, title): |
|
y, sr = librosa.load(audio_path, sr=None) |
|
S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, fmax=sr // 2) |
|
S_dB = librosa.power_to_db(S, ref=np.max) |
|
|
|
plt.figure(figsize=(10, 4)) |
|
librosa.display.specshow(S_dB, sr=sr, x_axis='time', y_axis='mel', fmax=sr // 2, cmap='viridis') |
|
plt.colorbar(format='%+2.0f dB') |
|
plt.title(title) |
|
plt.tight_layout() |
|
return plt |
|
|
|
|
|
if uploaded_file and st.button("Enhance Audio"): |
|
st.write("Processing audio...") |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
input_path = os.path.join(tmp_dir, "input.wav") |
|
output_path = os.path.join(tmp_dir, "output.wav") |
|
|
|
|
|
with open(input_path, "wb") as f: |
|
f.write(uploaded_file.read()) |
|
|
|
|
|
st.write("Input Audio Spectrogram:") |
|
input_spectrogram = plot_spectrogram(input_path, title="Input Audio Spectrogram") |
|
st.pyplot(input_spectrogram) |
|
|
|
|
|
audiosr = build_model(model_name=model_name, device=device) |
|
|
|
|
|
waveform = super_resolution( |
|
audiosr, |
|
input_path, |
|
seed=random_seed, |
|
guidance_scale=guidance_scale, |
|
ddim_steps=ddim_steps, |
|
latent_t_per_second=latent_t_per_second, |
|
) |
|
|
|
|
|
save_wave(waveform, inputpath=input_path, savepath=tmp_dir, name="output", samplerate=48000) |
|
|
|
|
|
st.write("Enhanced Audio Spectrogram:") |
|
output_spectrogram = plot_spectrogram(output_path, title="Enhanced Audio Spectrogram") |
|
st.pyplot(output_spectrogram) |
|
|
|
|
|
st.audio(input_path, format="audio/wav") |
|
st.write("Original Audio:") |
|
|
|
st.audio(output_path, format="audio/wav") |
|
st.write("Enhanced Audio:") |
|
st.download_button("Download Enhanced Audio", data=open(output_path, "rb").read(), file_name="enhanced_audio.wav") |
|
|
|
|
|
st.write("Built with [Streamlit](https://streamlit.io) and [AudioSR](https://audioldm.github.io/audiosr)") |
|
|