|
--- |
|
title: YOLO |
|
app_file: demo/hf_demo.py |
|
sdk: gradio |
|
sdk_version: 4.36.1 |
|
--- |
|
# YOLO: Official Implementation of YOLOv9, YOLOv7 |
|
|
|
[![Documentation Status](https://readthedocs.org/projects/yolo-docs/badge/?version=latest)](https://yolo-docs.readthedocs.io/en/latest/?badge=latest) |
|
![GitHub License](https://img.shields.io/github/license/WongKinYiu/YOLO) |
|
![WIP](https://img.shields.io/badge/status-WIP-orange) |
|
![](https://img.shields.io/github/actions/workflow/status/WongKinYiu/YOLO/deploy.yaml) |
|
|
|
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/yolov9-learning-what-you-want-to-learn-using/real-time-object-detection-on-coco)](https://paperswithcode.com/sota/real-time-object-detection-on-coco) |
|
|
|
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)]() |
|
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-green)](https://huggingface.co/spaces/henry000/YOLO) |
|
|
|
<!-- > [!IMPORTANT] |
|
> This project is currently a Work In Progress and may undergo significant changes. It is not recommended for use in production environments until further notice. Please check back regularly for updates. |
|
> |
|
> Use of this code is at your own risk and discretion. It is advisable to consult with the project owner before deploying or integrating into any critical systems. --> |
|
|
|
Welcome to the official implementation of YOLOv7 and YOLOv9. This repository will contains the complete codebase, pre-trained models, and detailed instructions for training and deploying YOLOv9. |
|
|
|
## TL;DR |
|
- This is the official YOLO model implementation with an MIT License. |
|
- For quick deployment: you can directly install by pip+git: |
|
```shell |
|
pip install git+https://github.com/WongKinYiu/YOLO.git |
|
yolo task.data.source=0 # source could be a single file, video, image folder, webcam ID |
|
``` |
|
|
|
## Introduction |
|
- [**YOLOv9**: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616) |
|
- [**YOLOv7**: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors](https://arxiv.org/abs/2207.02696) |
|
|
|
## Installation |
|
To get started using YOLOv9's developer mode, we recommand you clone this repository and install the required dependencies: |
|
```shell |
|
git clone git@github.com:WongKinYiu/YOLO.git |
|
cd YOLO |
|
pip install -r requirements.txt |
|
``` |
|
|
|
## Features |
|
|
|
<table> |
|
<tr><td> |
|
|
|
| Tools | pip π | HuggingFace π€ | Docker π³ | |
|
| -------------------- | :----: | :--------------: | :-------: | |
|
| Compatibility | β
| β
| π§ͺ | |
|
|
|
| Phase | Training | Validation | Inference | |
|
| ------------------- | :------: | :---------: | :-------: | |
|
| Supported | β
| β
| β
| |
|
|
|
</td><td> |
|
|
|
| Device | CUDA | CPU | MPS | |
|
| ------------------ | :---------: | :-------: | :-------: | |
|
| PyTorch | v1.12 | v2.3+ | v1.12 | |
|
| ONNX | β
| β
| - | |
|
| TensorRT | β
| - | - | |
|
| OpenVINO | - | π§ͺ | β | |
|
|
|
</td></tr> </table> |
|
|
|
|
|
|
|
## Task |
|
These are simple examples. For more customization details, please refer to [Notebooks](examples) and lower-level modifications **[HOWTO](docs/HOWTO.md)**. |
|
|
|
## Training |
|
To train YOLO on your machine/dataset: |
|
|
|
1. Modify the configuration file `yolo/config/dataset/**.yaml` to point to your dataset. |
|
2. Run the training script: |
|
```shell |
|
python yolo/lazy.py task=train dataset=** use_wandb=True |
|
python yolo/lazy.py task=train task.data.batch_size=8 model=v9-c weight=False # or more args |
|
``` |
|
|
|
### Transfer Learning |
|
To perform transfer learning with YOLOv9: |
|
```shell |
|
python yolo/lazy.py task=train task.data.batch_size=8 model=v9-c dataset={dataset_config} device={cpu, mps, cuda} |
|
``` |
|
|
|
### Inference |
|
To use a model for object detection, use: |
|
```shell |
|
python yolo/lazy.py # if cloned from GitHub |
|
python yolo/lazy.py task=inference \ # default is inference |
|
name=AnyNameYouWant \ # AnyNameYouWant |
|
device=cpu \ # hardware cuda, cpu, mps |
|
model=v9-s \ # model version: v9-c, m, s |
|
task.nms.min_confidence=0.1 \ # nms config |
|
task.fast_inference=onnx \ # onnx, trt, deploy |
|
task.data.source=data/toy/images/train \ # file, dir, webcam |
|
+quite=True \ # Quite Output |
|
yolo task.data.source={Any Source} # if pip installed |
|
yolo task=inference task.data.source={Any} |
|
``` |
|
|
|
### Validation |
|
To validate model performance, or generate a json file in COCO format: |
|
```shell |
|
python yolo/lazy.py task=validation |
|
python yolo/lazy.py task=validation dataset=toy |
|
``` |
|
|
|
## Contributing |
|
Contributions to the YOLO project are welcome! See [CONTRIBUTING](docs/CONTRIBUTING.md) for guidelines on how to contribute. |
|
|
|
### TODO Diagrams |
|
```mermaid |
|
flowchart TB |
|
subgraph Features |
|
Taskv7-->Segmentation["#35 Segmentation"] |
|
Taskv7-->Classification["#34 Classification"] |
|
Taskv9-->Segmentation |
|
Taskv9-->Classification |
|
Trainv7 |
|
end |
|
subgraph Model |
|
MODELv7-->v7-X |
|
MODELv7-->v7-E6 |
|
MODELv7-->v7-E6E |
|
MODELv9-->v9-T |
|
MODELv9-->v9-S |
|
MODELv9-->v9-E |
|
end |
|
subgraph Bugs |
|
Fix-->Fix1["#12 mAP > 1"] |
|
Fix-->Fix2["v9 Gradient Bump"] |
|
Reply-->Reply1["#39"] |
|
Reply-->Reply2["#36"] |
|
end |
|
``` |
|
|
|
## Star History |
|
[![Star History Chart](https://api.star-history.com/svg?repos=WongKinYiu/YOLO&type=Date)](https://star-history.com/#WongKinYiu/YOLO&Date) |
|
|
|
## Citations |
|
``` |
|
@misc{wang2022yolov7, |
|
title={YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors}, |
|
author={Chien-Yao Wang and Alexey Bochkovskiy and Hong-Yuan Mark Liao}, |
|
year={2022}, |
|
eprint={2207.02696}, |
|
archivePrefix={arXiv}, |
|
primaryClass={id='cs.CV' full_name='Computer Vision and Pattern Recognition' is_active=True alt_name=None in_archive='cs' is_general=False description='Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.'} |
|
} |
|
@misc{wang2024yolov9, |
|
title={YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information}, |
|
author={Chien-Yao Wang and I-Hau Yeh and Hong-Yuan Mark Liao}, |
|
year={2024}, |
|
eprint={2402.13616}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
``` |
|
|