import cv2 | |
import numpy as np | |
import math | |
import torch | |
import random | |
from PIL import Image | |
from torch.utils.data import DataLoader | |
from torchvision.transforms import Resize | |
torch.manual_seed(12345) | |
random.seed(12345) | |
np.random.seed(12345) | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
class WireframeExtractor: | |
def __call__(self, image: np.ndarray): | |
""" | |
Extract corners of wireframe from a barnacle image | |
:param image: Numpy RGB image of shape (W, H, 3) | |
:return [x1, y1, x2, y2] | |
""" | |
h, w = image.shape[:2] | |
imghsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) | |
hsvblur = cv2.GaussianBlur(imghsv, (9, 9), 0) | |
lower = np.array([70, 20, 20]) | |
upper = np.array([130, 255, 255]) | |
color_mask = cv2.inRange(hsvblur, lower, upper) | |
invert = cv2.bitwise_not(color_mask) | |
contours, _ = cv2.findContours(invert, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) | |
max_contour = contours[0] | |
largest_area = 0 | |
for index, contour in enumerate(contours): | |
area = cv2.contourArea(contour) | |
if area > largest_area: | |
if cv2.pointPolygonTest(contour, (w / 2, h / 2), False) == 1: | |
largest_area = area | |
max_contour = contour | |
x, y, w, h = cv2.boundingRect(max_contour) | |
# return [x, y, x + w, y + h] | |
return x,y,w,h | |
wireframe_extractor = WireframeExtractor() | |
def show_anns(anns): | |
if len(anns) == 0: | |
return | |
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True) | |
ax = plt.gca() | |
ax.set_autoscale_on(False) | |
polygons = [] | |
color = [] | |
for ann in sorted_anns: | |
m = ann['segmentation'] | |
img = np.ones((m.shape[0], m.shape[1], 3)) | |
color_mask = np.random.random((1, 3)).tolist()[0] | |
for i in range(3): | |
img[:,:,i] = color_mask[i] | |
ax.imshow(np.dstack((img, m*0.35))) | |
# def find_contours(img, color): | |
# low = color - 10 | |
# high = color + 10 | |
# mask = cv2.inRange(img, low, high) | |
# contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | |
# print(f"Total Contours: {len(contours)}") | |
# nonempty_contours = list() | |
# for i in range(len(contours)): | |
# if hierarchy[0,i,3] == -1 and cv2.contourArea(contours[i]) > cv2.arcLength(contours[i], True): | |
# nonempty_contours += [contours[i]] | |
# print(f"Nonempty Contours: {len(nonempty_contours)}") | |
# contour_plot = img.copy() | |
# contour_plot = cv2.drawContours(contour_plot, nonempty_contours, -1, (0,255,0), -1) | |
# sorted_contours = sorted(nonempty_contours, key=cv2.contourArea, reverse= True) | |
# bounding_rects = [cv2.boundingRect(cnt) for cnt in contours] | |
# for (i,c) in enumerate(sorted_contours): | |
# M= cv2.moments(c) | |
# cx= int(M['m10']/M['m00']) | |
# cy= int(M['m01']/M['m00']) | |
# cv2.putText(contour_plot, text= str(i), org=(cx,cy), | |
# fontFace= cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.25, color=(255,255,255), | |
# thickness=1, lineType=cv2.LINE_AA) | |
# N = len(sorted_contours) | |
# H, W, C = img.shape | |
# boxes_array_xywh = [cv2.boundingRect(cnt) for cnt in sorted_contours] | |
# boxes_array_corners = [[x, y, x+w, y+h] for x, y, w, h in boxes_array_xywh] | |
# boxes = torch.tensor(boxes_array_corners) | |
# labels = torch.ones(N) | |
# masks = np.zeros([N, H, W]) | |
# for idx in range(len(sorted_contours)): | |
# cnt = sorted_contours[idx] | |
# cv2.drawContours(masks[idx,:,:], [cnt], 0, (255), -1) | |
# masks = masks / 255.0 | |
# masks = torch.tensor(masks) | |
# # for box in boxes: | |
# # cv2.rectangle(contour_plot, (box[0].item(), box[1].item()), (box[2].item(), box[3].item()), (255,0,0), 2) | |
# return contour_plot, (boxes, masks) | |
# def get_dataset_x(blank_image, filter_size=50, filter_stride=2): | |
# full_image_tensor = torch.tensor(blank_image).type(torch.FloatTensor).permute(2, 0, 1).unsqueeze(0) | |
# num_windows_h = math.floor((full_image_tensor.shape[2] - filter_size) / filter_stride) + 1 | |
# num_windows_w = math.floor((full_image_tensor.shape[3] - filter_size) / filter_stride) + 1 | |
# windows = torch.nn.functional.unfold(full_image_tensor, (filter_size, filter_size), stride=filter_stride).reshape( | |
# [1, 3, 50, 50, num_windows_h * num_windows_w]).permute([0, 4, 1, 2, 3]).squeeze() | |
# dataset_images = [windows[idx] for idx in range(len(windows))] | |
# dataset = list(dataset_images) | |
# return dataset | |
# def get_dataset(labeled_image, blank_image, color, filter_size=50, filter_stride=2, label_size=5): | |
# contour_plot, (blue_boxes, blue_masks) = find_contours(labeled_image, color) | |
# mask = torch.sum(blue_masks, 0) | |
# label_dim = int((labeled_image.shape[0] - filter_size) / filter_stride + 1) | |
# labels = torch.zeros(label_dim, label_dim) | |
# mask_labels = torch.zeros(label_dim, label_dim, filter_size, filter_size) | |
# for lx in range(label_dim): | |
# for ly in range(label_dim): | |
# mask_labels[lx, ly, :, :] = mask[ | |
# lx * filter_stride: lx * filter_stride + filter_size, | |
# ly * filter_stride: ly * filter_stride + filter_size | |
# ] | |
# print(labels.shape) | |
# for box in blue_boxes: | |
# x = int((box[0] + box[2]) / 2) | |
# y = int((box[1] + box[3]) / 2) | |
# window_x = int((x - int(filter_size / 2)) / filter_stride) | |
# window_y = int((y - int(filter_size / 2)) / filter_stride) | |
# clamp = lambda n, minn, maxn: max(min(maxn, n), minn) | |
# labels[ | |
# clamp(window_y - label_size, 0, labels.shape[0] - 1):clamp(window_y + label_size, 0, labels.shape[0] - 1), | |
# clamp(window_x - label_size, 0, labels.shape[0] - 1):clamp(window_x + label_size, 0, labels.shape[0] - 1), | |
# ] = 1 | |
# positive_labels = labels.flatten() / labels.max() | |
# negative_labels = 1 - positive_labels | |
# pos_mask_labels = torch.flatten(mask_labels, end_dim=1) | |
# neg_mask_labels = 1 - pos_mask_labels | |
# mask_labels = torch.stack([pos_mask_labels, neg_mask_labels], dim=1) | |
# dataset_labels = torch.tensor(list(zip(positive_labels, negative_labels))) | |
# dataset = list(zip( | |
# get_dataset_x(blank_image, filter_size=filter_size, filter_stride=filter_stride), | |
# dataset_labels, | |
# mask_labels | |
# )) | |
# return dataset, (labels, mask_labels) | |
# from torchvision.models.resnet import resnet50 | |
# from torchvision.models.resnet import ResNet50_Weights | |
# print("Loading resnet...") | |
# model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2) | |
# hidden_state_size = model.fc.in_features | |
# model.fc = torch.nn.Linear(in_features=hidden_state_size, out_features=2, bias=True) | |
# model.to(device) | |
# model.load_state_dict(torch.load("model_best_epoch_4_59.62.pth", map_location=torch.device(device))) | |
# model.to(device) | |
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor | |
model = sam_model_registry["default"](checkpoint="./sam_vit_h_4b8939.pth") | |
model.to(device) | |
predictor = SamPredictor(model) | |
mask_generator = SamAutomaticMaskGenerator(model) | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
import io | |
def check_circularity(segmentation): | |
img_u8 = segmentation.astype(np.uint8) | |
im_gauss = cv2.GaussianBlur(img_u8, (5, 5), 0) | |
ret, thresh = cv2.threshold(im_gauss, 0, 255, cv2.THRESH_BINARY) | |
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | |
con = contours[0] | |
perimeter = cv2.arcLength(con, True) | |
area = cv2.contourArea(con) | |
if perimeter != 0: | |
circularity = 4*math.pi*(area/(perimeter*perimeter)) | |
if 0.8 < circularity < 1.2: | |
return True | |
else: | |
return circularity | |
def count_barnacles(image_raw, split_num, progress=gr.Progress()): | |
progress(0, desc="Finding bounding wire") | |
# crop image | |
# h, w = raw_input_img.shape[:2] | |
# imghsv = cv2.cvtColor(raw_input_img, cv2.COLOR_RGB2HSV) | |
# hsvblur = cv2.GaussianBlur(imghsv, (9, 9), 0) | |
# lower = np.array([70, 20, 20]) | |
# upper = np.array([130, 255, 255]) | |
# color_mask = cv2.inRange(hsvblur, lower, upper) | |
# invert = cv2.bitwise_not(color_mask) | |
# contours, _ = cv2.findContours(invert, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) | |
# max_contour = contours[0] | |
# largest_area = 0 | |
# for index, contour in enumerate(contours): | |
# area = cv2.contourArea(contour) | |
# if area > largest_area: | |
# if cv2.pointPolygonTest(contour, (w / 2, h / 2), False) == 1: | |
# largest_area = area | |
# max_contour = contour | |
# x, y, w, h = cv2.boundingRect(max_contour) | |
# image = cv2.cvtColor(image_raw, cv2.COLOR_BGR2RGB) | |
# image = Image.fromarray(image_raw) | |
# image = image[:,:,::-1] | |
# image = image_raw | |
# print(image.shape) | |
# print(type(image)) | |
# print(image.dtype) | |
# print(image) | |
corners = wireframe_extractor(image_raw) | |
print(corners) # (0, 0, 1254, 1152) | |
cropped_image = image_raw[corners[1]:corners[3]+corners[1], corners[0]:corners[2]+corners[0], :] | |
print(cropped_image.shape) | |
# cropped_image = cropped_image[100:400, 100:400] | |
# print(cropped_image) | |
# progress(0, desc="Generating Masks by point in window") | |
# # get center point of windows | |
# predictor.set_image(image) | |
# mask_counter = 0 | |
# masks = [] | |
# for x in range(1,20, 2): | |
# for y in range(1,20, 2): | |
# point = np.array([[x*25, y*25]]) | |
# input_label = np.array([1]) | |
# mask, score, logit = predictor.predict( | |
# point_coords=point, | |
# point_labels=input_label, | |
# multimask_output=False, | |
# ) | |
# if score[0] > 0.8: | |
# mask_counter += 1 | |
# masks.append(mask) | |
# return mask_counter | |
split_num = 2 | |
x_inc = int(cropped_image.shape[0]/split_num) | |
y_inc = int(cropped_image.shape[1]/split_num) | |
startx = -x_inc | |
mask_counter = 0 | |
good_masks = [] | |
centers = [] | |
for r in range(0, split_num): | |
startx += x_inc | |
starty = -y_inc | |
for c in range(0, split_num): | |
starty += y_inc | |
small_image = cropped_image[starty:starty+y_inc, startx:startx+x_inc, :] | |
# plt.figure() | |
# plt.imshow(small_image) | |
# plt.axis('on') | |
masks = mask_generator.generate(small_image) | |
for mask in masks: | |
circular = check_circularity(mask['segmentation']) | |
if circular and mask['area']>500 and mask['area'] < 10000: | |
mask_counter += 1 | |
# if cropped_image.shape != image_raw.shape: | |
# add_to_row = [False] * corners[0] | |
# temp = [False]*(corners[2]+corners[0]) | |
# temp = [temp]*corners[1] | |
# new_seg = np.array(temp) | |
# for row in mask['segmentation']: | |
# row = np.append(add_to_row, row) | |
# new_seg = np.vstack([new_seg, row]) | |
# mask['segmentation'] = new_seg | |
good_masks.append(mask) | |
box = mask['bbox'] | |
centers.append((box[0] + box[2]/2 + corners[0] + startx, box[1] + box[3]/2 + corners[1] + starty)) | |
progress(0, desc="Generating Plot") | |
# Create a figure with a size of 10 inches by 10 inches | |
fig = plt.figure(figsize=(10, 10)) | |
# Display the image using the imshow() function | |
# plt.imshow(cropped_image) | |
plt.imshow(image_raw) | |
# Call the custom function show_anns() to plot annotations on top of the image | |
# show_anns(good_masks) | |
for coord in centers: | |
plt.scatter(coord[0], coord[1], marker="x", color="red", s=32) | |
# Turn off the axis | |
plt.axis('off') | |
# Get the plot as a numpy array | |
# buf = io.BytesIO() | |
# plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0) | |
# buf.seek(0) | |
# img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8) | |
# buf.close() | |
# # Decode the numpy array to an image | |
# annotated = cv2.imdecode(img_arr, 1) | |
# annotated = cv2.cvtColor(annotated, cv2.COLOR_BGR2RGB) | |
# # Close the figure | |
# plt.close(fig) | |
# return annotated, mask_counter, centers | |
return fig, mask_counter, centers | |
# return len(masks) | |
# progress(0, desc="Resizing Image") | |
# cropped_img = raw_input_img[x:x+w, y:y+h] | |
# cropped_image_tensor = torch.transpose(torch.tensor(cropped_img).to(device), 0, 2) | |
# resize = Resize((1500, 1500)) | |
# input_img = cropped_image_tensor | |
# blank_img_copy = torch.transpose(input_img, 0, 2).to("cpu").detach().numpy().copy() | |
# progress(0, desc="Generating Windows") | |
# test_dataset = get_dataset_x(input_img) | |
# test_dataloader = DataLoader(test_dataset, batch_size=1024, shuffle=False) | |
# model.eval() | |
# predicted_labels_list = [] | |
# for data in progress.tqdm(test_dataloader): | |
# with torch.no_grad(): | |
# data = data.to(device) | |
# predicted_labels_list += [model(data)] | |
# predicted_labels = torch.cat(predicted_labels_list) | |
# x = int(math.sqrt(predicted_labels.shape[0])) | |
# predicted_labels = predicted_labels.reshape([x, x, 2]).detach() | |
# label_img = predicted_labels[:, :, :1].cpu().numpy() | |
# label_img -= label_img.min() | |
# label_img /= label_img.max() | |
# label_img = (label_img * 255).astype(np.uint8) | |
# mask = np.array(label_img > 180, np.uint8) | |
# contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\ | |
# gt_contours = find_contours(labeled_input_img[x:x+w, y:y+h], cropped_img, np.array([59, 76, 160])) | |
# def extract_contour_center(cnt): | |
# M = cv2.moments(cnt) | |
# cx = int(M['m10'] / M['m00']) | |
# cy = int(M['m01'] / M['m00']) | |
# return cx, cy | |
# filter_width = 50 | |
# filter_stride = 2 | |
# def rev_window_transform(point): | |
# wx, wy = point | |
# x = int(filter_width / 2) + wx * filter_stride | |
# y = int(filter_width / 2) + wy * filter_stride | |
# return x, y | |
# nonempty_contours = filter(lambda cnt: cv2.contourArea(cnt) != 0, contours) | |
# windows = map(extract_contour_center, nonempty_contours) | |
# points = list(map(rev_window_transform, windows)) | |
# for x, y in points: | |
# blank_img_copy = cv2.circle(blank_img_copy, (x, y), radius=4, color=(255, 0, 0), thickness=-1) | |
# print(f"pointlist: {len(points)}") | |
# return blank_img_copy, len(points) | |
demo = gr.Interface(count_barnacles, | |
inputs=[ | |
gr.Image(type="numpy", label="Input Image"), | |
], | |
outputs=[ | |
# gr.Image(type="numpy", label="Annotated Image"), | |
gr.Plot(label="Annotated Image"), | |
gr.Number(label="Predicted Number of Barnacles"), | |
gr.Dataframe(type="array", headers=["x", "y"], label="Mask centers") | |
# gr.Number(label="Actual Number of Barnacles"), | |
# gr.Number(label="Custom Metric") | |
]) | |
# examples="examples") | |
demo.queue(concurrency_count=10).launch() |