Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
#8
by
AminFaraji
- opened
app.py
CHANGED
@@ -1,147 +1,104 @@
|
|
1 |
-
import spaces
|
2 |
-
import torch
|
3 |
-
|
4 |
import gradio as gr
|
5 |
-
import
|
6 |
-
from
|
7 |
-
from
|
8 |
-
|
9 |
-
import
|
10 |
-
import
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
)
|
25 |
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
def transcribe(inputs, task):
|
29 |
-
if inputs is None:
|
30 |
-
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
31 |
-
|
32 |
-
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
33 |
-
return text
|
34 |
-
|
35 |
-
|
36 |
-
def _return_yt_html_embed(yt_url):
|
37 |
-
video_id = yt_url.split("?v=")[-1]
|
38 |
-
HTML_str = (
|
39 |
-
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
40 |
-
" </center>"
|
41 |
-
)
|
42 |
-
return HTML_str
|
43 |
-
|
44 |
-
def download_yt_audio(yt_url, filename):
|
45 |
-
info_loader = youtube_dl.YoutubeDL()
|
46 |
-
|
47 |
-
try:
|
48 |
-
info = info_loader.extract_info(yt_url, download=False)
|
49 |
-
except youtube_dl.utils.DownloadError as err:
|
50 |
-
raise gr.Error(str(err))
|
51 |
-
|
52 |
-
file_length = info["duration_string"]
|
53 |
-
file_h_m_s = file_length.split(":")
|
54 |
-
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
55 |
-
|
56 |
-
if len(file_h_m_s) == 1:
|
57 |
-
file_h_m_s.insert(0, 0)
|
58 |
-
if len(file_h_m_s) == 2:
|
59 |
-
file_h_m_s.insert(0, 0)
|
60 |
-
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
61 |
-
|
62 |
-
if file_length_s > YT_LENGTH_LIMIT_S:
|
63 |
-
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
64 |
-
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
65 |
-
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
66 |
-
|
67 |
-
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
68 |
-
|
69 |
-
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
70 |
-
try:
|
71 |
-
ydl.download([yt_url])
|
72 |
-
except youtube_dl.utils.ExtractorError as err:
|
73 |
-
raise gr.Error(str(err))
|
74 |
-
|
75 |
-
@spaces.GPU
|
76 |
-
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
77 |
-
html_embed_str = _return_yt_html_embed(yt_url)
|
78 |
-
|
79 |
-
with tempfile.TemporaryDirectory() as tmpdirname:
|
80 |
-
filepath = os.path.join(tmpdirname, "video.mp4")
|
81 |
-
download_yt_audio(yt_url, filepath)
|
82 |
-
with open(filepath, "rb") as f:
|
83 |
-
inputs = f.read()
|
84 |
-
|
85 |
-
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
86 |
-
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
87 |
-
|
88 |
-
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
89 |
-
|
90 |
-
return html_embed_str, text
|
91 |
-
|
92 |
-
|
93 |
-
demo = gr.Blocks()
|
94 |
-
|
95 |
-
mf_transcribe = gr.Interface(
|
96 |
-
fn=transcribe,
|
97 |
-
inputs=[
|
98 |
-
gr.Audio(sources="microphone", type="filepath"),
|
99 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
100 |
-
],
|
101 |
-
outputs="text",
|
102 |
-
title="Whisper Large V3 Turbo: Transcribe Audio",
|
103 |
-
description=(
|
104 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
105 |
-
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
106 |
-
" of arbitrary length."
|
107 |
-
),
|
108 |
-
allow_flagging="never",
|
109 |
-
)
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
115 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
116 |
-
],
|
117 |
-
outputs="text",
|
118 |
-
title="Whisper Large V3: Transcribe Audio",
|
119 |
-
description=(
|
120 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
121 |
-
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
122 |
-
" of arbitrary length."
|
123 |
-
),
|
124 |
-
allow_flagging="never",
|
125 |
-
)
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
inputs=[
|
130 |
-
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
131 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
132 |
-
],
|
133 |
-
outputs=["html", "text"],
|
134 |
-
title="Whisper Large V3: Transcribe YouTube",
|
135 |
-
description=(
|
136 |
-
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
|
137 |
-
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
|
138 |
-
" arbitrary length."
|
139 |
-
),
|
140 |
-
allow_flagging="never",
|
141 |
)
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer,StoppingCriteria,StoppingCriteriaList,pipeline
|
3 |
+
from langchain.chains import ConversationChain
|
4 |
+
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
|
5 |
+
from langchain.llms import HuggingFacePipeline
|
6 |
+
from langchain import PromptTemplate
|
7 |
+
from typing import List
|
8 |
+
import torch
|
9 |
+
# Load the model and tokenizer
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
11 |
+
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
12 |
+
|
13 |
+
generation_config = model.generation_config
|
14 |
+
generation_config.temperature = 0
|
15 |
+
generation_config.num_return_sequences = 1
|
16 |
+
generation_config.max_new_tokens = 256
|
17 |
+
generation_config.use_cache = False
|
18 |
+
generation_config.repetition_penalty = 1.7
|
19 |
+
generation_config.pad_token_id = tokenizer.eos_token_id
|
20 |
+
generation_config.eos_token_id = tokenizer.eos_token_id
|
21 |
+
generation_config
|
22 |
+
stop_tokens = [["Human", ":"], ["AI", ":"]]
|
23 |
+
|
24 |
+
class StopGenerationCriteria(StoppingCriteria):
|
25 |
+
def __init__(
|
26 |
+
self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torch.device
|
27 |
+
):
|
28 |
+
stop_token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens]
|
29 |
+
self.stop_token_ids = [
|
30 |
+
torch.tensor(x, dtype=torch.long, device=device) for x in stop_token_ids
|
31 |
+
]
|
32 |
+
|
33 |
+
def __call__(
|
34 |
+
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
|
35 |
+
) -> bool:
|
36 |
+
for stop_ids in self.stop_token_ids:
|
37 |
+
if torch.eq(input_ids[0][-len(stop_ids) :], stop_ids).all():
|
38 |
+
return True
|
39 |
+
return False
|
40 |
+
|
41 |
+
|
42 |
+
stopping_criteria = StoppingCriteriaList(
|
43 |
+
[StopGenerationCriteria(stop_tokens, tokenizer, model.device)]
|
44 |
+
)
|
45 |
|
46 |
+
class StopGenerationCriteria(StoppingCriteria):
|
47 |
+
def __init__(
|
48 |
+
self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torch.device
|
49 |
+
):
|
50 |
+
stop_token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens]
|
51 |
+
self.stop_token_ids = [
|
52 |
+
torch.tensor(x, dtype=torch.long, device=device) for x in stop_token_ids
|
53 |
+
]
|
54 |
+
|
55 |
+
def __call__(
|
56 |
+
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
|
57 |
+
) -> bool:
|
58 |
+
for stop_ids in self.stop_token_ids:
|
59 |
+
if torch.eq(input_ids[0][-len(stop_ids) :], stop_ids).all():
|
60 |
+
return True
|
61 |
+
return False
|
62 |
+
|
63 |
+
|
64 |
+
generation_pipeline = pipeline(
|
65 |
+
model=model,
|
66 |
+
tokenizer=tokenizer,
|
67 |
+
return_full_text=True,
|
68 |
+
task="text-generation",
|
69 |
+
stopping_criteria=stopping_criteria,
|
70 |
+
generation_config=generation_config,
|
71 |
)
|
72 |
|
73 |
+
llm = HuggingFacePipeline(pipeline=generation_pipeline)
|
74 |
+
template = """
|
75 |
+
The following
|
76 |
+
Current conversation:
|
77 |
|
78 |
+
{history}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
Human: {input}
|
81 |
+
AI:""".strip()
|
82 |
+
prompt = PromptTemplate(input_variables=["history", "input"], template=template)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
memory = ConversationBufferWindowMemory(
|
85 |
+
memory_key="history", k=6, return_only_outputs=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
)
|
87 |
|
88 |
+
chain = ConversationChain(
|
89 |
+
llm=llm,
|
90 |
+
prompt=prompt,
|
91 |
+
verbose=True,
|
92 |
+
)
|
93 |
|
94 |
+
def generate_response(input_text):
|
95 |
+
res=chain.invoke(input_text)
|
96 |
+
print('response:',res)
|
97 |
+
print(4444444444444444444444444444444444444444444444)
|
98 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
99 |
+
outputs = model.generate(inputs.input_ids, max_length=50)
|
100 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
101 |
+
return res
|
102 |
+
|
103 |
+
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text")
|
104 |
+
iface.launch()
|